179 research outputs found
Critical temperature and the transition from quantum to classical order parameter fluctuations in the three-dimensional Heisenberg antiferromagnet
We present results of extensive quantum Monte Carlo simulations of the
three-dimensional (3D) S=1/2 Heisenberg antiferromagnet. Finite-size scaling of
the spin stiffness and the sublattice magnetization gives the critical
temperature Tc/J = 0.946 +/- 0.001. The critical behavior is consistent with
the classical 3D Heisenberg universality class, as expected. We discuss the
general nature of the transition from quantum mechanical to classical (thermal)
order parameter fluctuations at a continuous Tc > 0 phase transition.Comment: 5 pages, Revtex, 4 PostScript figures include
Theranostics in Boron neutron capture therapy
Boron neutron capture therapy (BNCT) has the potential to specifically destroy tumor cells without damaging the tissues infiltrated by the tumor. BNCT is a binary treatment method based on the combination of two agents that have no effect when applied individually:10B and thermal neutrons. Exclusively, the combination of both produces an effect, whose extent depends on the amount of10B in the tumor but also on the organs at risk. It is not yet possible to determine the10B concentration in a specific tissue using non-invasive methods. At present, it is only possible to measure the10B concentration in blood and to estimate the boron concentration in tissues based on the assumption that there is a fixed uptake of10B from the blood into tissues. On this imprecise assumption, BNCT can hardly be developed further. A therapeutic approach, combining the boron carrier for therapeutic purposes with an imaging tool, might allow us to determine the10B concentration in a specific tissue using a non-invasive method. This review provides an overview of the current clinical protocols and preclinical experiments and results on how innovative drug development for boron delivery systems can also incorporate concurrent imaging. The last section focuses on the importance of proteomics for further optimization of BNCT, a highly precise and personalized therapeutic approach
Recommended from our members
Experimental Transport Benchmarks for Physical Dosimetry to Support Development of Fast-Neutron Therapy with Neutron Capture Augmentation
The Idaho National Laboratory (INL), the University of Washington (UW) Neutron Therapy Center, the University of Essen (Germany) Neutron Therapy Clinic, and the Northern Illinois University(NIU) Institute for Neutron Therapy at Fermilab have been collaborating in the development of fast-neutron therapy (FNT) with concurrent neutron capture (NCT) augmentation [1,2]. As part of this effort, we have conducted measurements to produce suitable benchmark data as an aid in validation of advanced three-dimensional treatment planning methodologies required for successful administration of FNT/NCT. Free-beam spectral measurements as well as phantom measurements with Lucite{trademark} cylinders using thermal, resonance, and threshold activation foil techniques have now been completed at all three clinical accelerator facilities. The same protocol was used for all measurements to facilitate intercomparison of data. The results will be useful for further detailed characterization of the neutron beams of interest as well as for validation of various charged particle and neutron transport codes and methodologies for FNT/NCT computational dosimetry, such as MCNP [3], LAHET [4], and MINERVA [5]
Finite-Size Scaling of the Ground State Parameters of the Two-Dimensional Heisenberg Model
The ground state parameters of the two-dimensional S=1/2 antiferromagnetic
Heisenberg model are calculated using the Stochastic Series Expansion quantum
Monte Carlo method for L*L lattices with L up to 16. The finite-size results
for the energy E, the sublattice magnetization M, the long-wavelength
susceptibility chi_perp(q=2*pi/L), and the spin stiffness rho_s, are
extrapolated to the thermodynamic limit using fits to polynomials in 1/L,
constrained by scaling forms previously obtained from renormalization group
calculations for the nonlinear sigma model and chiral perturbation theory. The
results are fully consistent with the predicted leading finite-size corrections
and are of sufficient accuracy for extracting also subleading terms. The
subleading energy correction (proportional to 1/L^4) agrees with chiral
perturbation theory to within a statistical error of a few percent, thus
providing the first numerical confirmation of the finite-size scaling forms to
this order. The extrapolated ground state energy per spin, E=-0.669437(5), is
the most accurate estimate reported to date. The most accurate Green's function
Monte Carlo (GFMC) result is slightly higher than this value, most likely due
to a small systematic error originating from ``population control'' bias in
GFMC. The other extrapolated parameters are M=0.3070(3), rho_s = 0.175(2),
chi_perp = 0.0625(9), and the spinwave velocity c=1.673(7). The statistical
errors are comparable with those of the best previous estimates, obtained by
fitting loop algorithm quantum Monte Carlo data to finite-temperature scaling
forms. Both M and rho_s obtained from the finite-T data are, however, a few
error bars higher than the present estimates. It is argued that the T=0
extrapolations performed here are less sensitive to effects of neglectedComment: 16 pages, RevTex, 9 PostScript figure
Odours of Plasmodium falciparum-infected participants influence mosquito-host interactions.
Malaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile is affected by malaria infection. We compared the chemical composition and attractiveness to Anopheles coluzzii mosquitoes of skin odours from participants that were infected by Controlled Human Malaria Infection with Plasmodium falciparum. Skin odour composition differed between parasitologically negative and positive samples, with positive samples collected on average two days after parasites emerged from the liver into the blood, being associated with low densities of asexual parasites and the absence of gametocytes. We found a significant reduction in mosquito attraction to skin odour during infection for one experiment, but not in a second experiment, possibly due to differences in parasite strain. However, it does raise the possibility that infection can affect mosquito behaviour. Indeed, several volatile compounds were identified that can influence mosquito behaviour, including 2- and 3-methylbutanal, 3-hydroxy-2-butanone, and 6-methyl-5-hepten-2-one. To better understand the impact of our findings on Plasmodium transmission, controlled studies are needed in participants with gametocytes and higher parasite densities
Determination of 141Pr(alpha,n)144Pm cross sections at energies of relevance for the astrophysical p-process using the gamma-gamma coincidence method
The reaction 141Pr(alpha,n)144Pm was investigated between E_alpha=11 MeV and
15 MeV with the activation method using the gamma-gamma coincidence method with
a segmented clover-type high-purity Germanium (HPGe) detector. Measurements
with four other HPGe detectors were additionally made. The comparison proves
that the gamma-gamma coincidence method is an excellent tool to investigate
cross sections down to the microbarn range. The (alpha,n) reaction at low
energy is especially suited to test alpha+nucleus optical-model potentials for
application in the astrophysical p-process. The experimentally determined cross
sections were compared to Hauser-Feshbach statistical model calculations using
different optical potentials and generally an unsatisfactory reproduction of
the data was found. A local potential was constructed to improve the
description of the data. The consequences of applying the same potential to
calculate astrophysical (gamma,alpha) rates for 145Pm and 148Gd were explored.
In summary, the data and further results underline the problems in global
predictions of alpha+nucleus optical potentials at astrophysically relevant
energies.Comment: 13 pages, 9 figures, accepted in Phys. Rev.
Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity
Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito—early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans
Plasmodium-associated changes in human odor attract mosquitoes.
Malaria parasites (Plasmodium) can change the attractiveness of their vertebrate hosts to Anopheles vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally Plasmodium-infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate Plasmodium-induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs. parasite-free individuals. We found the aldehydes heptanal, octanal, and nonanal to be produced in greater amounts by infected individuals and detected by mosquito antennae. In behavioral experiments, we demonstrated that these, and other, Plasmodium-induced aldehydes enhanced the attractiveness of a synthetic odor blend mimicking "healthy" human odor. Heptanal alone increased the attractiveness of "parasite-free" natural human odor. Should the increased production of these aldehydes by Plasmodium-infected humans lead to increased mosquito biting in a natural setting, this would likely affect the transmission of malaria
Identification of a major rif transcript common to gametocytes and sporozoites of Plasmodium falciparum
Background: The Plasmodium falciparum parasite is transmitted in its sexual gametocyte stage from man to mosquito and as asexual sporozoites from mosquito to man. Developing gametocytes sequester preferentially in the bone marrow, but mature stage gametocytes are released to the bloodstream. Sexual stage parasite surface proteins are of interest as candidate target antigens for transmission blocking vaccines.Methods: In this study, the transcript profiles of rif and var genes, known to encode surface antigens in asexual blood stage parasites, were investigated at different stages of 3D7/NF54 gametocytogenesis and in sporozoites.Results: Gametocytes exhibited a rif transcript profile unlinked to the rif and var transcript profile of the asexual progenitors. At stage V, mature gametocytes produced high levels of a single rif gene, PF13_0006, which also dominated the rif transcript profile of sporozoites. All var genes appeared to be silenced in sporozoites.Conclusions: The most prominent variant surface antigen transcribed in both gametocytes and sporozoites of 3D7/NF54 is a single variant of the RIFIN protein family. This discovery may lead to the identification of the parasites binding ligands responsible for the adhesion during sexual stages and potentially to novel vaccine candidates
Safety, Immunogenicity, and Protective Efficacy of Intradermal Immunization with Aseptic, Purified, Cryopreserved Plasmodium falciparum Sporozoites in Volunteers Under Chloroquine Prophylaxis
Immunization of volunteers under chloroquine prophylaxis by bites of *Plasmodium falciparum* sporozoite (PfSPZ)–infected mosquitoes induces > 90% protection against controlled human malaria infection (CHMI). We studied intradermal immunization with cryopreserved, infectious PfSPZ in volunteers taking chloroquine (PfSPZ
chemoprophylaxis vaccine [CVac]). Vaccine groups 1 and 3 received 3x monthly immunizations with 7.5 x 10^4
PfSPZ. Control groups 2 and 4 received normal saline. Groups 1 and 2 underwent CHMI (#1) by mosquito bite 60
days after the third immunization. Groups 3 and 4 were boosted 168 days after the third immunization and
underwent CHMI (#2) 137 days later. Vaccinees (11/20, 55%) and controls (6/10, 60%) had the same percentage of
mild to moderate solicited adverse events. After CHMI #1, 8/10 vaccinees (group 1) and 5/5 controls (group 2)
became parasitemic by microscopy; the two negatives were positive by quantitative real-time polymerase chain
reaction (qPCR). After CHMI #2, all vaccinees in group 3 and controls in group 4 were parasitemic by qPCR.
Vaccinees showed weak antibody and no detectable cellular immune responses. Intradermal immunization with up
to 3 x 10^5 PfSPZ-CVac was safe, but induced only minimal immune responses and no sterile protection against Pf
CHMI.
INTRODUCTIO
- …