The ground state parameters of the two-dimensional S=1/2 antiferromagnetic
Heisenberg model are calculated using the Stochastic Series Expansion quantum
Monte Carlo method for L*L lattices with L up to 16. The finite-size results
for the energy E, the sublattice magnetization M, the long-wavelength
susceptibility chi_perp(q=2*pi/L), and the spin stiffness rho_s, are
extrapolated to the thermodynamic limit using fits to polynomials in 1/L,
constrained by scaling forms previously obtained from renormalization group
calculations for the nonlinear sigma model and chiral perturbation theory. The
results are fully consistent with the predicted leading finite-size corrections
and are of sufficient accuracy for extracting also subleading terms. The
subleading energy correction (proportional to 1/L^4) agrees with chiral
perturbation theory to within a statistical error of a few percent, thus
providing the first numerical confirmation of the finite-size scaling forms to
this order. The extrapolated ground state energy per spin, E=-0.669437(5), is
the most accurate estimate reported to date. The most accurate Green's function
Monte Carlo (GFMC) result is slightly higher than this value, most likely due
to a small systematic error originating from ``population control'' bias in
GFMC. The other extrapolated parameters are M=0.3070(3), rho_s = 0.175(2),
chi_perp = 0.0625(9), and the spinwave velocity c=1.673(7). The statistical
errors are comparable with those of the best previous estimates, obtained by
fitting loop algorithm quantum Monte Carlo data to finite-temperature scaling
forms. Both M and rho_s obtained from the finite-T data are, however, a few
error bars higher than the present estimates. It is argued that the T=0
extrapolations performed here are less sensitive to effects of neglectedComment: 16 pages, RevTex, 9 PostScript figure