4,783 research outputs found

    Evaluation of anomalies observed on film from S-190A flight system calibration test

    Get PDF
    Due to a persistent problem of scratched film from testing of the Skylab S-190A system, a series of tests were designed to identify the cause of the film scratching. The procedures followed in this test for pretest handling and packaging of the film, the makeup of the rolls for processing, and the results of the processed film evaluation are reported

    Measurement of the electron electric dipole moment using YbF molecules

    Get PDF
    The most sensitive measurements of the electron electric dipole moment d_e have previously been made using heavy atoms. Heavy polar molecules offer a greater sensitivity to d_e because the interaction energy to be measured is typically 10^3 times larger than in a heavy atom. We report the first measurement of this kind, for which we have used the molecule YbF. Together, the large interaction energy and the strong tensor polarizability of the molecule make our experiment essentially free of the systematic errors that currently limit d_e measurements in atoms. Our first result d_e = (- 0.2 \pm 3.2) x 10^-26 e.cm is less sensitive than the best atom measurement, but is limited only by counting statistics and demonstrates the power of the method.Comment: 4 pages, 4 figures. v2. Minor corrections and clarifications made in response to referee comment

    Hamiltonian formulation of nonlinear travelling Whistler waves

    No full text
    International audienceA Hamiltonian formulation of nonlinear, parallel propagating, travelling whistler waves is developed. The complete system of equations reduces to two coupled differential equations for the transverse electron speed uu and a phase variable ϕ=ϕpϕe\phi{=}\phi_p-\phi_e representing the difference in the phases of the transverse complex velocities of the protons and the electrons. Two integrals of the equations are obtained. The Hamiltonian integral H, is used to classify the trajectories in the (phi,w)(phi,w) phase plane, where phiphi and w=u2 are the canonical coordinates. Periodic, oscilliton solitary wave and compacton solutions are obtained, depending on the value of the Hamiltonian integral H and the Alfvén Mach number M of the travelling wave. The second integral of the equations of motion gives the position x in the travelling wave frame as an elliptic integral. The dependence of the spatial period, L, of the compacton and periodic solutions on the Hamiltonian integral H and the Alfvén Mach number M is given in terms of complete elliptic integrals of the first and second kind. A solitary wave solution, with an embedded rotational discontinuity is obtained in which the transverse Reynolds stresses of the electrons are balanced by equal and opposite transverse stresses due to the protons. The individual electron and proton phase variables phiephi_e and phipphi_p are determined in terms of phiphi and ww. An alternative Hamiltonian formulation in which ϕ~=ϕp+ϕe{\tilde\phi}{=}\phi_p+\phi_e is the new independent variable replacing x is used to write the travelling wave solutions parametrically in terms of ϕ~{\tilde\phi}

    Slowing heavy, ground-state molecules using an alternating gradient decelerator

    Get PDF
    Cold supersonic beams of molecules can be slowed down using a switched sequence of electrostatic field gradients. The energy to be removed is proportional to the mass of the molecules. Here we report deceleration of YbF, which is 7 times heavier than any molecule previously decelerated. We use an alternating gradient structure to decelerate and focus the molecules in their ground state. We show that the decelerator exhibits the axial and transverse stability required to bring these molecules to rest. Our work significantly extends the range of molecules amenable to this powerful method of cooling and trapping.Comment: 4 pages, 5 figure

    Analysis and design of solid-state circuits utilizing the NASA analysis computer program Annual report

    Get PDF
    Network Analysis for Systems Application Program /NASAP/ applicable in analysis and design of solid state circuit

    Dimension of interaction dynamics

    Full text link
    A method allowing to distinguish interacting from non-interacting systems based on available time series is proposed and investigated. Some facts concerning generalized Renyi dimensions that form the basis of our method are proved. We show that one can find the dimension of the part of the attractor of the system connected with interaction between its parts. We use our method to distinguish interacting from non-interacting systems on the examples of logistic and H\'enon maps. A classification of all possible interaction schemes is given.Comment: 15 pages, 14 (36) figures, submitted to PR

    The Neutron Electric Dipole Moment and CP-violating Couplings in the Supersymmetric Standard Model without R-parity

    Full text link
    We analyze the neutron electric dipole moment (EDM) in the Minimal Supersymmetric Model with explicit R-parity violating terms. The leading contribution to the EDM occurs at the 2-loop level and is dominated by the chromoelectric dipole moments of quarks, assuming there is no tree-level mixings between sleptons and Higgs bosons or between leptons and gauginos. Based on the experimental constraint on the neutron EDM, we set limits on the imaginary parts of complex couplings λijk{\lambda'}_{ijk} and λijk{\lambda}_{ijk} due to the virtual b-loop or tau-loop.Comment: final manuscript to appear in Phys. Rev. D, 15 pages, latex, 4 figures include

    Temperature effect in the Casimir attraction of a thin metal film

    Full text link
    The Casimir effect for conductors at arbitrary temperatures is theoretically studied. By using the analytical properties of the Green functions and applying the Abel-Plan formula to Lifshitz's equation, the Casimir force is presented as sum of a temperature dependent and vacuum contributions of the fluctuating electromagnetic field. The general results are applied to the system consisting of a bulk conductor and a thin metal film. It is shown that a characteristic frequency of the thermal fluctuations in this system is proportional to the square root of a thickness of the metal film. For the case of the sufficiently high temperatures when the thermal fluctuations play the main role in the Casimir interaction, this leads to the growth of the effective dielectric permittivity of the film and to a disappearance of the dependence of Casimir's force on the sample thickness.Comment: LaTeX 2.09, 8 pages, no figure

    Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis

    Full text link
    We recently reported a new measurement of the electron's electric dipole moment using YbF molecules [Nature 473, 493 (2011)]. Here, we give a more detailed description of the methods used to make this measurement, along with a fuller analysis of the data. We show how our methods isolate the electric dipole moment from imperfections in the experiment that might mimic it. We describe the systematic errors that we discovered, and the small corrections that we made to account for these. By making a set of additional measurements with greatly exaggerated experimental imperfections, we find upper bounds on possible uncorrected systematic errors which we use to determine the systematic uncertainty in the measurement. We also calculate the size of some systematic effects that have been important in previous electric dipole moment measurements, such as the motional magnetic field effect and the geometric phase, and show them to be negligibly small in the present experiment. Our result is consistent with an electric dipole moment of zero, so we provide upper bounds to its size at various confidence levels. Finally, we review the prospects for future improvements in the precision of the experiment.Comment: 35 pages, 15 figure

    Picosecond Nonlinear Relaxation of Photoinjected Carriers in a Single GaAs/AlGaAs Quantum Dot

    Full text link
    Photoemission from a single self-organized GaAs/AlGaAs quantum dot (QD) is temporally resolved with picosecond time resolution. The emission spectra consisting of the multiexciton structures are observed to depend on the delay time and the excitation intensity. Quantitative agreement is found between the experimental data and the calculation based on a model which characterizes the successive relaxation of multiexcitons. Through the analysis we can determine the carrier relaxation time as a function of population of photoinjected carriers. Enhancement of the intra-dot carrier relaxation is demonstrated to be due to the carrier-carrier scattering inside a single QD.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B, Rapid
    corecore