71 research outputs found

    Groundwater resilience Nepal: preliminary findings from a case study in the Middle Hills

    Get PDF
    Groundwater resources in the Middle Hills of Nepal perform a major role in supplying domestic and irrigation water and in regulating river flows. However, there has been little systematic study of groundwater within the region, making it difficult to evaluate how water supplies and river flows may change in response to climatic and anthropogenic change. To begin to build an evidence base, two catchments in the Middle Hills were investigated. The aim of the study was to characterise the hydrogeology of the catchments, assess water supplies and water usage and evaluate how resilient groundwater may be to change. Two contrasting sub-catchments within the Kali Gandaki River catchment were chosen: Ramche Village Development Committee (VDC), at an elevation of 2000 – 3000 m, with subsistence terraced farming and highly forested slopes, and Madanpokhara VDC which is largely below 1000 m, with expanding commercial agriculture. Groundwater sampling was undertaken during the post-monsoon season 2013 and pre-monsoon season 2014. Springs, tube wells and rivers across the two catchments were investigated using a combination of surveys, flow measurements, and sampling for inorganic chemistry, stable isotopes, groundwater residence time indicators (CFC and SF6) and noble gases. In addition, 12 months of weekly hydrological monitoring and monthly water usage surveys were undertaken at several sites. There is a heavy reliance on springs for water supply in Ramche. The springs are typically perennial but with significantly reduced flows during the winter and pre-monsoon season. The springs have bicarbonate groundwater chemistry and generally low overall mineralisation. Springs issuing from the higher slopes are reliant on seasonal monsoon rainfall and snow to sustain higher flows, but baseflows are sustained by groundwater storage within the weathered aquifer and will therefore have some inter-annual storage. Discrete springs issuing from lower slopes are most likely to be fed from groundwater storage within the fractured aquifer network. Groundwater residence time indicators (CFC and SF6) suggest a mean residence time of 10-20 years for pre-monsoon groundwater, implying inter-annual storage and therefore some built in resilience. However the general low storage of the groundwater environment suggests that none of the springs would be resilient to a long term reduction in precipitation. In the lower catchment of Madanpokhara where floodplain and outwash deposits are present, many hand-drilled shallow tubewells have been installed in the last 5-10 years, decreasing the reliance on springs. The development of groundwater resources has resulted in a thriving agricultural co-operative, inward migration and a growing population. These shallow tubewells have increased the resilience of the water supplies to change but are potentially vulnerable to over-exploitation as a result of the rapid increase in abstraction. Groundwater sampled in tubewells along the margin of the floodplain is modern (~20 yrs Mean Residence Time (MRT)) with bicarbonate groundwater chemistry and no significant water quality concerns. Groundwater sampled from tubewells towards the centre of the floodplain appears to be older (~50 yrs MRT) with elevated concentrations of iron, manganese, zinc and arsenic detected at some sites. With a growing recognition of the importance of groundwater storage in the Middle Hills there is significant potential to further advance the characterisation of groundwater systems and investigate the resilience of groundwater supplies to change. Systematic monitoring of groundwater, as springs flows, groundwater levels and chemistry would give a much better understanding of emerging trends. Likewise, monitoring current yields of springs and comparing to historic values at installation may allow some conclusions to be drawn about the trajectory of springflow. There are several groundwater-related initiatives underway within organisations in Nepal; the lessons learned from this current research, the methodologies used and the preliminary findings will be of value to these

    Business process improvement with the AB-BPM methodology

    Get PDF
    A fundamental assumption of Business Process Management (BPM) is that redesign delivers refined and improved versions of business processes. This assumption, however, does not necessarily hold, and any required compensatory action may be delayed until a new round in the BPM life-cycle completes. Current approaches to process redesign face this problem in one way or another, which makes rapid process improvement a central research problem of BPM today. In this paper, we address this problem by integrating concepts from process execution with ideas from DevOps. More specifically, we develop a methodology called AB-BPM that offers process improvement validation in two phases: simulation and AB tests. Our simulation technique extracts decision probabilities and metrics from the event log of an existing process version and generates traces for the new process version based on this knowledge. The results of simulation guide us towards AB testing where two versions (A and B) are operational in parallel and any new process instance is routed to one of them. The routing decision is made at runtime on the basis of the achieved results for the registered performance metrics of each version. Our routing algorithm provides for ultimate convergence towards the best performing version, no matter if it is the old or the new version. We demonstrate the efficacy of our methodology and techniques by conducting an extensive evaluation based on both synthetic and real-life data

    Springs, storage and sensitivity to change : groundwater in Nepal's Middle Hills

    Get PDF
    The valleys in the foothills of the Himalayas may be some of the most sensitive areas to environmental and societal changes in Asia. Changes to the Asian monsoon and increasing temperatures could lead to variations in snow melt and runoff, and forecasts of increasingly inhospitable temperatures for lowland areas of Nepal and northern India (up to 60 oC) are already leading to migration to the cooler middle-hills. The use of groundwater within these catchments (from spring flows, tube wells and indirectly through baseflow) is vital for continued secure water supply for the growing populations and increased agricultural production. However groundwater resources in these valleys are poorly characterised and the resilience of water supplies dependant on these resources largely unknown

    Groundwater resources in the Indo-Gangetic Basin : resilience to climate change and abstraction

    Get PDF
    Groundwater within the Indo‐Gangetic Basin (IGB) alluvial aquifer system forms one of the world’s most important and heavily exploited reservoirs of freshwater. In this study we have examined the groundwater system through the lens of its resilience to change – both from the impact of climate change and increases in abstraction. This has led to the development of a series of new maps for the IGB aquifer, building on existing datasets held in Pakistan, India, Nepal and Bangladesh, a review of approximately 500 reports and papers, and three targeted field studies on under‐researched topics within the region. The major findings of the study are described below. The IGB groundwater system 1. The IGB alluvial aquifer system comprises a large volume of heterogeneous unconsolidated sediment in a complex environmental setting. Annual rainfall varies from 2000mm in the Bengal basin, and the system is dissected by the major river systems of the Indus, Ganges and Brahmaputra. The groundwater system has been modified by the introduction of large scale canal irrigation schemes using water from the Indus and Ganges since the 19th and early 20th centuries. 2. High yielding tubewells can be sustained in most parts of the alluvial aquifer system; permeability is often in the range of 10 – 60 m/d and specific yield (the drainable porosity) varies from 5 – 20%, making it highly productive. 3. High salinity and elevated arsenic concentrations exist in parts of the basin limiting the usefulness of the groundwater resource. Saline water predominates in the Lower Indus, and near to the coast in the Bengal Delta, and is also a major concern in the Middle Ganges and Upper Ganges (covering much of the Punjab Region in Pakistan, southern Punjab, Haryana and parts of Uttar Pradesh in India). Arsenic severely impacts the development of shallow groundwater in the fluvial influenced deltaic area of the Bengal Basin. 4. Recharge to the IGB aquifer system is substantial and dynamic, controlled by monsoonal rainfall, leakage from canals, river infiltration and irrigation returns. Recharge from rainfall can occur even with low annual rainfall (350 mm) and appears to dominate where rainfall is higher (> 750 mm). Canal leakage is also highly significant and constitutes the largest proportion of groundwater recharge in the drier parts of the aquifer, partially mitigating the effects of abstraction on groundwater storage. 5. Deep groundwater (>150 m) in the Bengal basin has strategic value for water supply, health and economic development. Excessive abstraction poses a greater threat to the quality of this deep groundwater than climate change. Heavy pumping may induce the downward migration of arsenic in parts of Bangladesh, and of saline water in coastal regions, but field evidence and modelling both suggest that deep groundwater abstraction for public water supply in southern Bangladesh is in general secure against widespread ingress of arsenic and saline water for at least 100 years

    Co-chaperones are limiting in a depleted chaperone network

    Get PDF
    To probe the limiting nodes in the chaperoning network which maintains cellular proteostasis, we expressed a dominant negative mutant of heat shock factor 1 (dnHSF1), the regulator of the cytoplasmic proteotoxic stress response. Microarray analysis of non-stressed dnHSF1 cells showed a two- or more fold decrease in the transcript level of 10 genes, amongst which are the (co-)chaperone genes HSP90AA1, HSPA6, DNAJB1 and HSPB1. Glucocorticoid signaling, which requires the Hsp70 and the Hsp90 folding machines, was severely impaired by dnHSF1, but fully rescued by expression of DNAJA1 or DNAJB1, and partially by ST13. Expression of DNAJB6, DNAJB8, HSPA1A, HSPB1, HSPB8, or STIP1 had no effect while HSP90AA1 even inhibited. PTGES3 (p23) inhibited only in control cells. Our results suggest that the DNAJ co-chaperones in particular become limiting in a depleted chaperoning network. Our results also suggest a difference between the transcriptomes of cells lacking HSF1 and cells expressing dnHSF1

    Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.

    Get PDF
    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases

    Analysis of Chaperone mRNA Expression in the Adult Mouse Brain by Meta Analysis of the Allen Brain Atlas

    Get PDF
    The pathology of many neurodegenerative diseases is characterized by the accumulation of misfolded and aggregated proteins in various cell types and regional substructures throughout the central and peripheral nervous systems. The accumulation of these aggregated proteins signals dysfunction of cellular protein homeostatic mechanisms such as the ubiquitin/proteasome system, autophagy, and the chaperone network. Although there are several published studies in which transcriptional profiling has been used to examine gene expression in various tissues, including tissues of neurodegenerative disease models, there has not been a report that focuses exclusively on expression of the chaperone network. In the present study, we used the Allen Brain Atlas online database to analyze chaperone expression levels. This database utilizes a quantitative in situ hybridization approach and provides data on 270 chaperone genes within many substructures of the adult mouse brain. We determined that 256 of these chaperone genes are expressed at some level. Surprisingly, relatively few genes, only 30, showed significant variations in levels of mRNA across different substructures of the brain. The greatest degree of variability was exhibited by genes of the DnaJ co-chaperone, Tetratricopeptide repeat, and the HSPH families. Our analysis provides a valuable resource towards determining how variations in chaperone gene expression may modulate the vulnerability of specific neuronal populations of mammalian brain

    Exploring synergies and trade-offs among the sustainable development goals: collective action and adaptive capacity in marginal mountainous areas of India

    Get PDF
    Global environmental change (GEC) threatens to undermine the sustainable development goals (SDGs). Smallholders in marginal mountainous areas (MMA) are particularly vulnerable due to precarious livelihoods in challenging environments. Acting collectively can enable and constrain the ability of smallholders to adapt to GEC. The objectives of this paper are: (i) identify collective actions in four MMA of the central Indian Himalaya Region, each with differing institutional contexts; (ii) assess the adaptive capacity of each village by measuring livelihood capital assets, diversity, and sustainable land management practices. Engaging with adaptive capacity and collective action literatures, we identify three broad approaches to adaptive capacity relating to the SDGs: natural hazard mitigation (SDG 13), social vulnerability (SDG 1, 2 and 5), and social–ecological resilience (SDG 15). We then develop a conceptual framework to understand the institutional context and identify SDG synergies and trade-offs. Adopting a mixed method approach, we analyse the relationships between collective action and the adaptive capacity of each village, the sites where apparent trade-offs and synergies among SDGs occur. Results illustrate each village has unique socio-environmental characteristics, implying distinct development challenges, vulnerabilities and adaptive capacities exist. Subsequently, specific SDG synergies and trade-offs occur even within MMA, and it is therefore crucial that institutions facilitate locally appropriate collective actions in order to achieve the SDGs. We suggest that co-production in the identification, prioritisation and potential solutions to the distinct challenges facing MMA can increase understandings of the specific dynamics and feedbacks necessary to achieve the SDGs in the context of GEC

    The Mammalian Disaggregase Machinery: Hsp110 Synergizes with Hsp70 and Hsp40 to Catalyze Protein Disaggregation and Reactivation in a Cell-Free System

    Get PDF
    Bacteria, fungi, protozoa, chromista and plants all harbor homologues of Hsp104, a AAA+ ATPase that collaborates with Hsp70 and Hsp40 to promote protein disaggregation and reactivation. Curiously, however, metazoa do not possess an Hsp104 homologue. Thus, whether animal cells renature large protein aggregates has long remained unclear. Here, it is established that mammalian cytosol prepared from different sources possesses a potent, ATP-dependent protein disaggregase and reactivation activity, which can be accelerated and stimulated by Hsp104. This activity did not require the AAA+ ATPase, p97. Rather, mammalian Hsp110 (Apg-2), Hsp70 (Hsc70 or Hsp70) and Hsp40 (Hdj1) were necessary and sufficient to slowly dissolve large disordered aggregates and recover natively folded protein. This slow disaggregase activity was conserved to yeast Hsp110 (Sse1), Hsp70 (Ssa1) and Hsp40 (Sis1 or Ydj1). Hsp110 must engage substrate, engage Hsp70, promote nucleotide exchange on Hsp70, and hydrolyze ATP to promote disaggregation of disordered aggregates. Similarly, Hsp70 must engage substrate and Hsp110, and hydrolyze ATP for protein disaggregation. Hsp40 must harbor a functional J domain to promote protein disaggregation, but the J domain alone is insufficient. Optimal disaggregase activity is achieved when the Hsp40 can stimulate the ATPase activity of Hsp110 and Hsp70. Finally, Hsp110, Hsp70 and Hsp40 fail to rapidly remodel amyloid forms of the yeast prion protein, Sup35, or the Parkinson's disease protein, alpha-synuclein. However, Hsp110, Hsp70 and Hsp40 enhanced the activity of Hsp104 against these amyloid substrates. Taken together, these findings suggest that Hsp110 fulfils a subset of Hsp104 activities in mammals. Moreover, they suggest that Hsp104 can collaborate with the mammalian disaggregase machinery to rapidly remodel amyloid conformers
    corecore