51 research outputs found

    細菌由来ヒト血清アルブミン結合ドメインを模倣した人工ヒト型タンパク質の設計

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学客員教授 本田 真也, 東京大学教授 津本 浩平, 東京大学教授 伊藤 耕一, 東京大学准教授 深井 周也, 東京大学客員准教授 富井 健太郎University of Tokyo(東京大学

    Characterization of sulfur-compound metabolism underlying wax-ester fermentation in Euglena gracilis

    Get PDF
    Euglena gracilis is a microalga, which has been used as a model organism for decades. Recent technological advances have enabled mass cultivation of this species for industrial applications such as feedstock in nutritional foods and cosmetics. E. gracilis degrades its storage polysaccharide (paramylon) under hypoxic conditions for energy acquisition by an oxygen-independent process and accumulates high amount of wax-ester as a by-product. Using this sequence of reactions referred to as wax-ester fermentation, E. gracilis is studied for its application in biofuel production. Although the wax-ester production pathway is well characterized, little is known regarding the biochemical reactions underlying the main metabolic route, especially, the existence of an unknown sulfur-compound metabolism implied by the nasty odor generation accompanying the wax-ester fermentation. In this study, we show sulfur-metabolomics of E. gracilis in aerobic and hypoxic conditions, to reveal the biochemical reactions that occur during wax-ester synthesis. Our results helped us in identifying hydrogen sulfide (H2S) as the nasty odor-producing component in wax-ester fermentation. In addition, the results indicate that glutathione and protein degrades during hypoxia, whereas cysteine, methionine, and their metabolites increase in the cells. This indicates that this shift of abundance in sulfur compounds is the cause of H2S synthesis

    Etiological factors in primary hepatic B-cell lymphoma

    Get PDF
    Sixty-four cases of malignant lymphoma involving the liver were examined. Of these, 20 cases were histologically confirmed to be primary hepatic B-cell lymphoma. Twelve of these 20 cases were diffuse large B-cell lymphoma (DLBCL) and eight cases were mucosa-associated lymphoid tissue (MALT) lymphoma. Of the 12 cases of DLBCL, six were immunohistologically positive for CD10 and/or Bcl6 (indicating a germinal center phenotype), six were positive for Bcl2, and five were positive for CD25. Eight of the 12 DLBCL cases (66.7%) and two of the eight MALT lymphoma cases (25%) had serum anti-hepatitis C virus (HCV) antibodies and HCV RNA. The incidence of HCV infection was significantly higher in the hepatic DLBCL cases than in systemic intravascular large B-cell cases with liver involvement (one of 11 cases, 9.1%) and T/NK-cell lymphoma cases (one of 19 cases, 5.3%) (p < 0.01 for both). Two hepatic DLBCL cases (16.7%) had rheumatoid arthritis treated with methotrexate, and four MALT lymphoma cases (50%) had Sjögren’s syndrome, primary biliary cirrhosis, or autoimmune hepatitis; one case in each of these two groups was complicated by chronic HCV-seropositive hepatitis. Although primary hepatic lymphoma is rare, persistent inflammatory processes associated with HCV infection or autoimmune disease may play independent roles in the lymphomagenesis of hepatic B cells

    Imparting Albumin-Binding Affinity to a Human Protein by Mimicking the Contact Surface of a Bacterial Binding Protein

    No full text
    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (<i>K</i><sub>D</sub> = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13–15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another

    NMR Analysis on Molecular Interaction of Lignin with Amino Acid Residues of Carbohydrate-Binding Module from Trichoderma reesei Cel7A

    Get PDF
    セルラーゼとリグニンの相互作用をはじめて分子レベルで包括的に解明 --バイオマス変換や酵素科学に貢献--. 京都大学プレスリリース. 2019-02-14.Lignocellulosic biomass is anticipated to serve as a platform for green chemicals and fuels. Nonproductive binding of lignin to cellulolytic enzymes should be avoided for conversion of lignocellulose through enzymatic saccharification. Although carbohydrate-binding modules (CBMs) of cellulolytic enzymes strongly bind to lignin, the adsorption mechanism at molecular level is still unclear. Here, we report NMR-based analyses of binding sites on CBM1 of cellobiohydrolase I (Cel7A) from a hyper-cellulase-producing fungus, Trichoderma reesei, with cellohexaose and lignins from Japanese cedar (C-MWL) and Eucalyptus globulus (E-MWL). A method was established to obtain properly folded TrCBM1. Only TrCBM1 that was expressed in freshly transformed E. coli had intact conformation. Chemical shift perturbation analyses revealed that TrCBM1 adsorbed cellohexaose in highly specific manner via two subsites, flat plane surface and cleft, which were located on the opposite side of the protein surface. Importantly, MWLs were adsorbed at multiple binding sites, including the subsites, having higher affinity than cellohexaose. G6 and Q7 were involved in lignin binding on the flat plane surface of TrCBM1, while cellohexaose preferentially interacted with N29 and Q34. TrCBM1 used much larger surface area to bind with C-MWL than E-MWL, indicating the mechanisms of adsorption toward hardwood and softwood lignins are different
    corecore