230 research outputs found

    Recent topics of candidate antigens for immunological control of ixodid ticks

    Get PDF
    Ticks have been recognized as harmful parasite since ancient times. At present immunological protection of host against ticks is the most practical and sustainable tick control method, which is more suitable to natural environment compared to the current use of acaricides. Recently, focuses on the development of anti-tick vaccine are the identification, molecular cloning and in vitro production of recombinant protein, responsible for executing key roles in regulating physiology, modulation of host immune response and pathogen transmission via ticks. Among several works, serine protease inhibitors have been thought as one of the most interest vaccine candidates, because serine protease inhibitors are mainly involved in the maintenance of homeostasis. In the current review, we would like to introduce selected examples covering aspects of tick vaccine antigen identification and analyses, because advances in vector molecular biology open new possibilities for vaccine development. In dealing with this subject, contents were mainly divided into tick salivary gland associated molecules (exposed antigens) injected into the host during tick feeding and no salivary gland molecules (concealed antigens). While emerging the fact that serine protease inhibitors belong to either exposed or concealed antigens, the utility of serine protease inhibitors for the candidate vaccine have been discussed separately because of the importance of serine protease inhibitors in the physiology of several organisms including ticks. Advances in tick vaccine development and related subjects are regularly reviewed and in this paper, referred citations of excellence are suggested as additional reading

    Increase of cells expressing PD-L1 in bovine leukemia virus infection and enhancement of anti-viral immune responses in vitro via PD-L1 blockade

    Get PDF
    The inhibitory receptor programmed death-1 (PD-1) and its ligand, programmed death-ligand 1 (PD-L1) are involved in immune evasion mechanisms for several pathogens causing chronic infections. Blockade of the PD-1/PD-L1 pathway restores anti-virus immune responses, with concomitant reduction in viral load. In a previous report, we showed that, in bovine leukemia virus (BLV) infection, the expression of bovine PD-1 is closely associated with disease progression. However, the functions of bovine PD-L1 are still unknown. To investigate the role of PD-L1 in BLV infection, we identified the bovine PD-L1 gene, and examined PD-L1 expression in BLV-infected cattle in comparison with uninfected cattle. The deduced amino acid sequence of bovine PD-L1 shows high homology to the human and mouse PD-L1. The proportion of PD-L1 positive cells, especially among B cells, was upregulated in cattle with the late stage of the disease compared to cattle at the aleukemic infection stage or uninfected cattle. The proportion of PD-L1 positive cells correlated positively with prediction markers for the progression of the disease such as leukocyte number, virus load and virus titer whilst on the contrary, it inversely correlated with the degree of interferon-gamma expression. Blockade of the PD-1/PD-L1 pathway in vitro by PD-L1-specific antibody upregulated the production of interleukin-2 and interferon-gamma, and correspondingly, downregulated the BLV provirus load and the proportion of BLV-gp51 expressing cells. These data suggest that PD-L1 induces immunoinhibition in disease progressed cattle during chronic BLV infection. Therefore, PD-L1 would be a potential target for developing immunotherapies against BLV infection

    Vegetacija in ekologija barij v Sloveniji

    Get PDF
    We confirmed infection of 2 patients with Borrelia miyamotoi in Japan by retrospective surveillance of Lyme disease patients and detection of B. miyamotoi DNA in serum samples. One patient also showed seroconversion for antibody against recombinant glycerophosphodiester phosphodiesterase of B. miyamotoi. Indigenous relapsing fever should be considered a health concern in Japan

    Potential of ferritin 2 as an antigen for the development of a universal vaccine for avian mites, poultry red mites, tropical fowl mites, and northern fowl mites

    Get PDF
    IntroductionPoultry red mites (PRMs, Dermanyssus gallinae), blood-sucking ectoparasites, are a threat to the poultry industry because of reduced production caused by infestation. In addition, tropical fowl mites (TFMs, Ornithonyssus bursa) and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous, distributed in various regions, genetically and morphologically close to PRMs, and cause similar problems to the poultry industry. Vaccine approaches have been studied for PRM control, and several molecules have been identified in PRMs as candidates for effective vaccine antigens. The development of an anti-PRM vaccine as a universal vaccine with broad efficacy against avian mites could improve the productivity of poultry farms worldwide. Molecules that are highly conserved among avian mites and have critical functions in the physiology and growth of mites could be ideal antigen candidates for the development of universal vaccines. Ferritin 2 (FER2), an iron-binding protein, is critical for the reproduction and survival of PRMs and has been reported as a useful vaccine antigen for the control of PRMs and a candidate for the universal vaccine antigen in some tick species.Method and resultsHerein, we identified and characterized FER2 in TFMs and NFM. Compared with the sequence of PRM, the ferroxidase centers of the heavy chain subunits were conserved in FER2 of TFMs and NFMs. Phylogenetic analysis revealed that FER2 belongs to clusters of secretory ferritins of mites and other arthropods. Recombinant FER2 (rFER2) proteins from PRMs, TFMs, and NFMs exhibited iron-binding abilities. Immunization with each rFER2 induced strong antibody responses in chickens, and each immune plasma cross-reacted with rFER2 from different mites. Moreover, mortality rates of PRMs fed with immune plasma against rFER2 from TFMs or NFMs, in addition to PRMs, were higher than those of control plasma.DiscussionrFER2 from each avian mite exhibited anti-PRM effects. This data suggests that it has the potential to be used as an antigen candidate for a universal vaccine against avian mites. Further studies are needed to access the usefulness of FER2 as a universal vaccine for the control of avian mites

    Cd, Hg, Pb, and As in European species of wild growing forest landscape fungi : a review

    Get PDF
    Kadmij (Cd), živo srebro (Hg), svinec (Pb) in arzen (As) so kovine, ki se naravno ali kot posledica človekove dejavnosti pojavljajo v okolju, tudi v gozdni krajini, kjer so rastišča številnih evropskih vrst gliv. Namen članka je bil pripraviti pregled vrst in količin izbranih kovin v trosnjakih gliv terprimerjati lastne raziskave, opravljene v različno onesnaženih območjih v Sloveniji (Zgornja Mežiška, Šaleška in Poljanska dolina), s podatki evropskih raziskav. Vsebnosti kovin v trosnjakih gliv iz neonesnaženih območij pravilomanajdemo v naslednjih intervalih: <0,5 mg/kg suhe teže (Cd), < 0,5 mg/kg do 10 mg/kg suhe teže (Hg), < 0,5 mg/kg do 5 mg/kg suhe teže (Pb) in < 0,5 mg/kg do 1 (2) mg/kg suhe teže (As). Na podlagi pregleda vsebnosti izbranih kovin v trosnjakih gliv ugotavljamo, da sta problematični kovini predvsem Cd in Hg. Omenjeni kovini lahko dosegata velike vsebnosti celo v glivah, ki rastejo v neonesnaženih območjih. Za vse analizirane kovin je značilno, da v trosnjakih gliv iz močno onesnaženih območji dosegajo velike, celo ekstemne vsebnosti, ki nekajkrat prekoračujejo vsebnosti iz neonesnaženih območij. Upoštevaje primerjavo z evropskimi raziskavami ugotavljamo, da je Zgornja Mežiška dolina obremenjena s Pb in Cd, Šaleška dolina pa s Cd in As.Metals, which originate from anthropogenic and natural activities, frequently occur in forest landscape with habitats of many European species of wild growing fungi. The presented review focuses on cadmium (Cd), mercury (Hg), lead (Pb), and arsenic (As) levels in fruiting bodies of wild growing European species of fungi of forest landscape. Furthermore, a comparison with studies of this kind performed in Slovenia was made with the aim to assess themetals levels in fungi from differently polluted areas in Slovenia (the Upper Meža Valley, the Šalek Valley, the Poljana Valley). The usual reported levels for most species grown in unpolluted areas are in the following ranges:Cd: < 0,5 mg/kg - 5 mg/kg dry weight (dw), Hg: < 0,5 mg/kg - 10 mg/kg dw, Pb: < 0,5 mg/kg - 5 mg/kg dw, As: < 0,5 mg/kg -1 (2) mg/kg dw (As), respectively. The presented data reveal that cadmium (Cd) and mercury (Hg) have probably been the most detrimental trace elements in fruiting bodies, which can reach increased levels even in unpolluted areas. It is evident for all analyzed trace elements that values can considerably increase in fungi picked in severely polluted areas. According to data regarding Slovene studies and comparison with other European studies, it is obvious that the Šalek Valley is enriched with Cd and As, while the Upper Meža Valley is considerably polluted with Pb and Cd

    Non-classical gluconeogenesis-dependent glucose metabolism in Rhipicephalus microplus embryonic cell line BME26

    Get PDF
    In this work we evaluated several genes involved in gluconeogenesis, glycolysis and glycogen metabolism, the major pathways for carbohydrate catabolism and anabolism, in the BME26 Rhipicephalus microplus embryonic cell line. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by alterations in energy resource availability (primarily glucose). BME26 cells in media were investigated using three different glucose concentrations, and changes in the transcription levels of target genes in response to carbohydrate utilization were assessed. The results indicate that several genes, such as glycogen synthase (GS), glycogen synthase kinase 3 (GSK3), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6 phosphatase (GP) displayed mutual regulation in response to glucose treatment. Surprisingly, the transcription of gluconeogenic enzymes was found to increase alongside that of glycolytic enzymes, especially pyruvate kinase, with high glucose treatment. In addition, RNAi data from this study revealed that the transcription of gluconeogenic genes in BME26 cells is controlled by GSK-3. Collectively, these results improve our understanding of how glucose metabolism is regulated at the genetic level in tick cells

    Tick saliva‑induced programmed death‑1 and PD‑ligand 1 and its related host immunosuppression

    Get PDF
    The tick Rhipicephalus microplus is a harmful parasite of cattle that causes considerable economic losses to the cattle breeding industry. Although R. microplus saliva (Rm-saliva) contains several immunosuppressants, any association between Rm-saliva and the expression of immunoinhibitory molecules, such as programmed death (PD)-1 and PD-ligand 1 (PD-L1), has not been described. In this study, flow cytometric analyses revealed that Rm-saliva upregulated PD-1 expression in T cells and PD-L1 expression in CD14+ and CD11c+ cells in cattle. Additionally, Rm-saliva decreased CD69 expression in T cells and Th1 cytokine production from peripheral blood mononuclear cells. Furthermore, PD-L1 blockade increased IFN-γ production in the presence of Rm-saliva, suggesting that Rm-saliva suppresses Th1 responses via the PD-1/PD-L1 pathway. To reveal the upregulation mechanism of PD-1/PD-L1 by Rm-saliva, we analyzed the function of prostaglandin E2 (PGE2), which is known as an inducer of PD-L1 expression, in Rm-saliva. We found that Rm-saliva contained a high concentration of PGE2, and PGE2 treatment induced PD-L1 expression in CD14+ cells in vitro. Immunohistochemical analyses revealed that PGE2 and PD-L1 expression was upregulated in tick-attached skin in cattle. These data suggest that PGE2 in Rm-saliva has the potential to induce the expression of immunoinhibitory molecules in host immune cells

    Redox imbalance induces remodeling of glucose metabolism in Rhipicephalus microplus embryonic cell line

    Get PDF
    Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H²O² exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H²O² exposure. The present work shows that this tick cell line could tolerate high H²O² concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control
    corecore