28,860 research outputs found

    Possible spin triplet superconductivity in Nax_xCoO2y_{2}\cdot yH2_{2}0

    Full text link
    Combining symmetry based considerations with inputs from available experimental results, we make the case that a novel spin-triplet superconductivity triggered by antiferromagnetic fluctuations may be realized in the newly discovered layered cobaltide Nax_xCoO2y_{2}\cdot yH2_2O. In the proposed picture, unaccessable via resonating-valence-bond physics extrapolated from half-filling, the pairing process is similar to that advanced for Sr2_{2}RuO4_4, but enjoys a further advantage coming from the hexagonal structure of the Fermi-surface which gives a stronger pairing tendency.Comment: 4 page

    Convergence of the Allen-Cahn equation with Neumann boundary conditions

    Get PDF
    We study a singular limit problem of the Allen-Cahn equation with Neumann boundary conditions and general initial data of uniformly bounded energy. We prove that the time-parametrized family of limit energy measures is Brakke's mean curvature flow with a generalized right angle condition on the boundary.Comment: 26 pages, 1 figur

    Krill-feeding behaviour in a chinstrap penguin compared to fish-eating in Magellanic penguins: a pilot study.

    Get PDF
    Inferring feeding activities from undulations in diving depth profiles is widespread in studies of foraging marine predators. This idea, however, has rarely been tested because of practical difficulties in obtaining an independent estimate of feeding activities at a time scale corresponding to depth changes within a dive. In this study we attempted to relate depth profile undulations and feeding activities during diving in a single Chinstrap Penguin Pygoscelis antarctica, by simultaneously using a conventional time-depth recorder and a recently developed beak-angle sensor. Although failure in device attachments meant that data were obtained successfully from just a part of a single foraging trip, our preliminary results show a linear relationship between the number of depth wiggles and the number of underwater beakopening events during a dive, suggesting that the relative feeding intensity of each dive could be represented by depth-profile data. Underwater beak-opening patterns of this krill-feeding penguin species are compared with recent data from three fish- and squid-feeding Magellanic Penguins Spheniscus magellanicus

    Structural phase control of (La1.48_{1.48}Nd0.40_{0.40}Sr0.12_{0.12})CuO4_4 thin films by epitaxial growth technique

    Full text link
    Epitaxial growth of (La1.48_{1.48}Nd0.40_{0.40}Sr0.12_{0.12})CuO4_4 thin films was studied by pulsed-laser deposition technique on three different substrates, SrTiO3_3 (100), LaSrAlO4_4 (001), and YAlO3_3 (001). The (Nd,Sr,Ce)2_2CuO4_4-type structure appears at the initial growth stage on SrTiO3_3 (100) when the film is deposited under the growth conditions optimized for (La,Sr)2_2CuO4_4. This (Nd,Sr,Ce)2_2CuO4_4-type structure can be eliminated by increasing the substrate temperature and the laser repetition frequency. Films on LaSrAlO4_4 (001) maintain a La2_2CuO4_4-type structure as bulk samples, but those on YAlO3_3 (001) show phase separation into La2_2CuO4_4- and Nd2_2CuO4_4-type structures. Such complicated results are explained in terms of the competition between lattice misfit and thermodynamic conditions. Interestingly the films with La2_2CuO4_4-type structure prepared on SrTiO3_3 and LaSrAlO4_4 show different surface structures and transport properties. The results indicate the possibility of controlling charge stripes of (La1.48_{1.48}Nd0.40_{0.40}Sr0.12_{0.12})CuO4_4 as was demonstrated in (La,Ba)2_2CuO4_4 thin films by Sato et al. (Phys. Rev. B {\bf 62}, R799 (2000)).Comment: 5 pages, 6 EPS figure, accepted for publication in Phys. Rev.

    Dynamics of Gravitating Magnetic Monopoles

    Get PDF
    According to previous work on magnetic monopoles, static regular solutions are nonexistent if the vacuum expectation value of the Higgs field η\eta is larger than a critical value ηcr\eta_{{\rm cr}}, which is of the order of the Planck mass. In order to understand the properties of monopoles for η>ηcr\eta>\eta_{{\rm cr}}, we investigate their dynamics numerically. If η\eta is large enough (ηcr\gg\eta_{{\rm cr}}), a monopole expands exponentially and a wormhole structure appears around it, regardless of coupling constants and initial configuration. If η\eta is around ηcr\eta_{{\rm cr}}, there are three types of solutions, depending on coupling constants and initial configuration: a monopole either expands as stated above, collapses into a black hole, or comes to take a stable configuration.Comment: 11 pages, revtex, postscript figures; results for various initial conditions are added; to appear in Phys. Rev.

    The poisoning effect of Mn in LaFe(1-x)Mn(x)AsO(0.89)F(0.11): unveiling a quantum critical point in the phase diagram of iron-based superconductors

    Full text link
    A superconducting-to-magnetic transition is reported for LaFe1x_{1-x}Mnx_xAsO0.89_{0.89}F0.11_{0.11} where a per thousand amount of Mn impurities is dispersed. By employing local spectroscopic techniques like muon spin rotation (muSR) and nuclear quadrupole resonance (NQR) on compounds with Mn contents ranging from x=0.025% to x=0.75%, we find that the electronic properties are extremely sensitive to the Mn impurities. In fact, a small amount of Mn as low as 0.2% suppresses superconductivity completely. Static magnetism, involving the FeAs planes, is observed to arise for x > 0.1% and becomes further enhanced upon increasing Mn substitution. Also a progressive increase of low energy spin fluctuations, leading to an enhancement of the NQR spin-lattice relaxation rate 1/T1, is observed upon Mn substitution. The analysis of 1/T1 for the sample closest to the the crossover between superconductivity and magnetism (x = 0.2%) points towards the presence of an antiferromagnetic quantum critical point around that doping level.Comment: 11 pages, 10 figure

    Chirality Selection in Open Flow Systems and in Polymerization

    Full text link
    As an attempt to understand the homochirality of organic molecules in life, a chemical reaction model is proposed where the production of chiral monomers from achiral substrate is catalyzed by the polymers of the same enatiomeric type. This system has to be open because in a closed system the enhanced production of chiral monomers by enzymes is compensated by the associated enhancement in back reaction, and the chiral symmetry is conserved. Open flow without cross inhibition is shown to lead to the chirality selection in a general model. In polymerization, the influx of substrate from the ambience and the efflux of chiral products for purposes other than the catalyst production make the system necessarily open. The chiral symmetry is found to be broken if the influx of substrate lies within a finite interval. As the efficiency of the enzyme increases, the maximum value of the enantiomeric excess approaches unity so that the chirality selection becomes complete.Comment: 8 pages, 4 figure

    Coupled Replicator Equations for the Dynamics of Learning in Multiagent Systems

    Full text link
    Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos--behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.Comment: 4 pages, 3 figures, http://www.santafe.edu/projects/CompMech/papers/credlmas.html; updated references, corrected typos, changed conten
    corecore