288 research outputs found

    Lip incompetence and myofunctional therapy

    Get PDF
    Lip incompetence, which is a state in which the upper and lower lips are constantly apart, is thought to induce mouth breathing that may result in the development of gingivitis and periodontal disease. In the orthodontic field, lip incompetence has major problems for diagnosis, when determining the treatment goal and at the time of retention. We have been performing studies on lip incompetence and have obtained the following results : (1) it is possible to predict to some extent the state of lip closure during sleep by examination only in an awake state, (2) anterior teeth are positioned forward in individuals with lip incompetence, and (3) a training method called Button Pull is effective as a myofunctional therapy for improving lip incompetence, but there remains a need to clarify the background

    Human T-Lymphotropic Virus Type 1 (HTLV-1) and Regulatory T Cells in HTLV-1-Associated Neuroinflammatory Disease

    Get PDF
    Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that is the causative agent of adult T cell leukemia/lymphoma (ATL) and associated with multiorgan inflammatory disorders, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and uveitis. HTLV-1-infected T cells have been hypothesized to contribute to the development of these disorders, although the precise mechanisms are not well understood. HTLV-1 primarily infects CD4+ T helper (Th) cells that play a central role in adaptive immune responses. Based on their functions, patterns of cytokine secretion, and expression of specific transcription factors and chemokine receptors, Th cells that are differentiated from naïve CD4+ T cells are classified into four major lineages: Th1, Th2, Th17, and T regulatory (Treg) cells. The CD4+CD25+CCR4+ T cell population, which consists primarily of suppressive T cell subsets, such as the Treg and Th2 subsets in healthy individuals, is the predominant viral reservoir of HTLV-1 in both ATL and HAM/TSP patients. Interestingly, CD4+CD25+CCR4+ T cells become Th1-like cells in HAM/TSP patients, as evidenced by their overproduction of IFN-γ, suggesting that HTLV-1 may intracellularly induce T cell plasticity from Treg to IFN-γ+ T cells. This review examines the recent research into the association between HTLV-1 and Treg cells that has greatly enhanced understanding of the pathogenic mechanisms underlying immune dysregulation in HTLV-1-associated neuroinflammatory disease

    Quinazolinobenzodiazepine Derivatives, Novobenzomalvins A–C: Fibronectin Expression Regulators from Aspergillus novofumigatus

    Get PDF
    Three new quinazolinobenzodiazepine derivatives, novobenzomalvins A (1), B (2), and C (3), have been isolated as fibronectin expression regulators from Aspergillus novofumigatus CBS117520. The structures of 1 to 3 were established by spectroscopic and physicochemical analysis, and chemical investigation including the total synthesis of 1. Treatment with novo-benzomalvins A (1), B (2), C (3), and N-methylnovobenzomalvin A (5) increased the expression of fibronectin in normal human neonatal dermal fibroblast cells

    大学等の化学実験室における低予算での化学物質蒸気由来リスク低減の試み

    Get PDF
    大学等の化学実験におけるリスク低減は長年の課題である。その中でも、多人数が同時に実験を行う学生実験室において揮発性の高い化学物質を使用する場合、実験を行う学生数に対して十分な数の囲い式フード型の局所排気装置を設置できていない状況がある。さらに、囲い式フード型の局所排気装置については、予算とスペースの問題から必要数を導入できない場合も多い。そこで、我々は低費用でリスクの低減化を図るために、通常の化学実験室に備えられている既設の設備を活用して外付け式フード型の局所排気装置を導入した。本報告では、その費用対効果と実際に使用した学生の意見を示し、化学実験における安全性の向上および教育効果を紹介する。Risk-reducing in chemical experiments in universities is an urgent task. Although environmental arrangement of chemical laboratory for undergraduate students at the moment does not look enough, it is difficult to obtain a sufficient cost to improve in many of recent universities.Therefore, we tried to set up local exhaust ventilation at low cost by using already existing facilities to improve environments of chemical laboratory. In the present report, we introduce cost-effectiveness for setting up local exhaust ventilation and educational effects for undergraduate students who used the local exhaust ventilation

    A homological approach to a mathematical definition of pulmonary fibrosis and emphysema on computed tomography

    Get PDF
    Three-dimensional imaging is essential to evaluate local abnormalities and understand structure-function relationships in an organ. However, quantifiable and interpretable methods to localize abnormalities remain unestablished. Visual assessments are prone to bias, machine learning methods depend on training images, and the underlying decision principle is usually difficult to interpret. Here, we developed a homological approach to mathematically define emphysema and fibrosis in the lungs on computed tomography (CT). Using persistent homology, the density of homological features, including connected components, tunnels, and voids, was extracted from the volumetric CT scans of lung diseases. A pair of CT values at which each homological feature appeared (birth) and disappeared (death) was computed by sweeping the threshold levels from higher to lower CT values. Consequently, fibrosis and emphysema were defined as voxels with dense voids having a longer lifetime (birth-death difference) and voxels with dense connected components having a lower birth, respectively. In an independent dataset including subjects with idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and combined pulmonary fibrosis and emphysema (CPFE), the proposed definition enabled accurate segmentation with comparable quality to deep learning in terms of Dice coefficients. Persistent homology-defined fibrosis was closely associated with physiological abnormalities such as impaired diffusion capacity and long-term mortality in subjects with IPF and CPFE, and persistent homology-defined emphysema was associated with impaired diffusion capacity in subjects with COPD. The present persistent homology-based evaluation of structural abnormalities could help explore the clinical and physiological impacts of structural changes and morphological mechanisms of disease progression
    corecore