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Abstract

Three-dimensional imaging is essential to evaluate local abnormalities and understand structure-function relationships in an
organ. However, quantifiable and interpretable methods to localize abnormalities remain unestablished. Visual assessments are
prone to bias, machine learning methods depend on training images, and the underlying decision principle is usually difficult to
interpret. Here, we developed a homological approach to mathematically define emphysema and fibrosis in the lungs on com-
puted tomography (CT). With the use of persistent homology, the density of homological features, including connected compo-
nents, tunnels, and voids, was extracted from the volumetric CT scans of lung diseases. A pair of CT values at which each
homological feature appeared (birth) and disappeared (death) was computed by sweeping the threshold levels from higher to
lower CT values. Consequently, fibrosis and emphysema were defined as voxels with dense voids having a longer lifetime (birth-
death difference) and voxels with dense connected components having a lower birth, respectively. In an independent dataset
including subjects with idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and combined pulmo-
nary fibrosis and emphysema (CPFE), the proposed definition enabled accurate segmentation with comparable quality to deep
learning in terms of Dice coefficients. Persistent homology-defined fibrosis was closely associated with physiological abnormal-
ities such as impaired diffusion capacity and long-term mortality in subjects with IPF and CPFE, and persistent homology-defined
emphysema was associated with impaired diffusion capacity in subjects with COPD. The present persistent homology-based
evaluation of structural abnormalities could help explore the clinical and physiological impacts of structural changes and morpho-
logical mechanisms of disease progression.

NEW & NOTEWORTHY This study proposes a homological approach to mathematically define a three-dimensional texture fea-
ture of emphysema and fibrosis on chest computed tomography using persistent homology. The proposed definition enabled
accurate segmentation with comparable quality to deep learning while offering higher interpretability than deep learning-based
methods.

computed tomography; deep learning; fibrosis; lung disease; persistent homology

INTRODUCTION

The lungs are the primary organs of the respiratory sys-
tem, comprising airways, parenchyma, and vessels, and are
continuously involved in gas exchange (1). These structural
components are three-dimensionally well organized in
healthy lungs, but respiratory diseases disrupt this system,
which may cause lung function deterioration and even a
poor prognosis (2). Idiopathic pulmonary fibrosis (IPF) is a
major fibroproliferative lung disease that induces parenchy-
mal fibrosis (3, 4). Chronic obstructive pulmonary disease
(COPD) is also a major lung disease characterized by paren-
chymal destruction (emphysema) and airway disease (5).

These chronic lung diseases induce heterogeneous structural
alterations closely associated with local dynamic changes in
molecular pathways and underlie the variability in clinical
and physiological outcomes. Therefore, a detailed quantita-
tive morphological evaluation is critical to reveal the patho-
genesis of these diseases, understand the structure-function
relationships in the lungs, and improve outcomes.

Medical three-dimensional imaging is essential for diag-
nosing diseases and evaluating local structural abnormal-
ities. Computed tomography (CT) images comprise voxels
that reflect tissue density measured in CT values and are
widely used to evaluate lung diseases (6, 7). Visual assess-
ments by expert radiologists are often regarded as the gold
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standard for morphological diagnosis, and quantitative meth-
ods have been explored to aid these visual assessments.
Emphysema is characterized by lower CT values due to paren-
chymal destruction (6), whereas fibrosis is characterized by
higher CT values due to deposition of extracellular matrix
such as collagen (7, 8). However, this notion is an oversimplifi-
cation; thus, the quality of simple thresholding segmentation
is unsatisfactory. Simple thresholding cannot accurately seg-
ment honeycomb cysts, which are a typical radiological find-
ing of IPF characterized by low-density cystic regions
surrounded by walls with higher density. Additionally, fibro-
sis and emphysema coexist in subjects diagnosed with com-
bined pulmonary fibrosis and emphysema (CPFE) (9, 10).
Texture analysis and deep learning (DL) techniques have
been investigated to overcome these problems (10–12).
However, they require many consistently labeled images that
radiologists manually and laboriously prepare (13), and the
underlying decision principle for these data-driven “black
box” methods is usually difficult to interpret. Therefore, a re-
producible and interpretable mathematical definition of local
radiological abnormalities remains an unmet need to facili-
tate the use of three-dimensional imaging and improve clini-
cal management.

Honeycomb cysts, for example, have a characteristic three-
dimensional structure, as the name suggests. Thus various ra-
diological findings can be characterized by topological fea-
tures. A three-dimensional shape can be extracted from a
volumetric CT by thresholding at a specific CT value. The top-
ological properties of the three-dimensional shape are cap-
tured by a tool in topological data analysis called homology,
which describes the number of holes of a given dimension
such as the connected components (dimension 0), tunnels
(dimension 1), and voids (dimension 2). However, different
thresholds yield different outputs. This difficulty was over-
come by extending the concept of homology to persistent
homology, which describes the persistence of homological
features (14). Persistent homology encodes a pair of the level
at which a homological feature (cycle) of each dimension
appears (birth) and the level at which it disappears (death) by
sweeping the threshold level from high to low values. The
obtained persistent homology data can be visualized using a
persistence diagram in which each homological cycle is repre-
sented by a point with coordinates (death, birth) on the plane
according to the dimensions (15, 16). In medical imaging, per-
sistent homology has allowed the detection of a difference in
the network structure of airway trees on CT between patients
with COPD and non-COPD controls (17) and the classification
of abnormal liver lesions on CT and MRI that conventional
methods could not detect (18, 19). However, the previously
reported methods exclusively focused on the overall informa-
tion of a given image (the whole volume or a small patch) but
have not yet produced localized information on radiological
abnormalities.

The goal of this collaborative work by experts in medicine
and mathematics is to establish a homological approach to a
mathematical definition of any specific local regions on vol-
umetric imaging beyond the global signatures, allowing seg-
mentation of the complicated structures and uncovering the
mechanism that governs the local structural alteration and
functional abnormalities. As a first step, the present study
specifically focuses on defining pulmonary fibrosis and

emphysema on CT using persistent homology to localize
these abnormalities with a comparable accuracy to DL-based
segmentation while providing simple and interpretable defi-
nitions that are difficult to generate using DL-based meth-
ods. Persistent homology-based definitions of fibrosis and
emphysema were established using the first dataset of CT
scans from controls and COPD and IPF subjects and then
were validated in the independent second dataset of CT
scans fromCOPD, IPF, and CPFE subjects.

METHODS

Study Design

Two different datasets were prepared. Among the subjects
who had undergone inspiratory CT scans at full inspiration
and spirometry at the hospital from 2006 to 2014, we ran-
domly selected 15 healthy nonsmokers (controls), 15 subjects
with COPD, and 15 subjects with IPF without visual CT find-
ings of emphysema for the first dataset and 30 COPD
subjects, 30 IPF subjects without visual CT findings of em-
physema, and 30 CPFE subjects for the second dataset. All
the subjects with COPD and CPFE were smokers. Control
subjects were defined as nonsmokers aged 30years or older
with normal spirometry, no abnormal CT findings on visual
inspection, and no history of lung disease. The exclusion cri-
teria for subjects with COPD, CPFE, and IPF were 1) age
younger than 40yr, 2) a history of lung resection surgery and
radiation therapy to the lungs, and 3) other lung diseases,
such as lung cancer, bronchiectasis, and chronic lung infec-
tion. The diagnosis of IPF was based on multidisciplinary
discussion (MDD) according to the Official ATS/ERS/JRS/
ALAT Clinical Practice Guideline for the diagnosis of IPF
(20). COPD was diagnosed based on a combination of post-
bronchodilator forced expiratory volume in 1 s (FEV1)/forced
vital capacity (FVC) <0.7, smoking history >10 pack-yr, and
respiratory symptoms (5). All COPD subjects showed visual
CT findings of emphysema without fibrotic changes. CPFE
was defined as subjects with IPF who showed visual CT find-
ings of emphysema. Spirometry and measurement of the
carbon monoxide diffusing capacity (DLCO) were performed
using the single-breath method and the Chestac-65V system
(Chest MI Corp.). The composite physiological index (CPI),
which has been used as a major index to estimate fibrosis,
was calculated using the following equation: 91.0 � [0.65 �
%predicted DLCO] � [0.53�% of predicted FVC] þ [0.34�%
of predicted FEV1] (21). The prognostic information after CT
scans over 5yr was retrospectively reviewed in the medical
records. The Ethics Committee approved the retrospective
analysis of the data (no. R1323) and waived the written
informed consent requirement.

CT Acquisitions and Lung Segmentations

CT scans were performed with Aquilion One and Prime
scanners (Canon Medical Systems) at the 120-kV peak (kVp)
and autoexposure control, and images with a 0.5-mm slice
thickness were reconstructed using a sharp reconstruction
algorithm (FC51 or 56) for all the participants in the two data-
sets. The fields of view were 350mm and 320mm, and
the voxel resolutions were 0.683�0.683�0.5mm and
0.625 � 0.625�0.5mm for the male and female subjects,

HOMOLOGY AND RADIOLOGICAL ABNORMALITIES IN LUNG DISEASES

602 J Appl Physiol � doi:10.1152/japplphysiol.00150.2021 � www.jap.org
Downloaded from journals.physiology.org/journal/jappl (133.003.201.031) on October 24, 2022.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://www.jap.org


respectively. From the original CT images, the lungs were
segmented using deep neural networks according to a
report by Kaji et al. (22) (https://github.com/shizuo-kaji/
PairedImageTranslation), who provided a Python code
for generic image translation algorithms, including
widely used U-Net (23) with several enhancements, such
as GAN regularizers. With this script, a segmentation
model was trained by a medical doctor using 988 pairs of
original CT images and segmented lung images that were
obtained from an independent dataset of participants for
the present analyses. The lung fields were then extracted
from the CT images based on the trained model. The same
script was used for the DL-based segmentation of fibrosis and
emphysema as a comparison target to the proposed method.
A neural network model based on U-Net (23) was trained
using a set of 114 manually segmented axial slices chosen
from the first dataset. The validation of the present DL
method was performed using the manual segmentation of CT
images (25 slices) randomly selected from the second dataset
as the reference in this study. These selected images were also
used to evaluate the performance of persistent homology-
based segmentation. Additionally, the conventional thresh-
olding method defined fibrosis as CT voxels with greater than
�200 HU (24) and emphysema as CT voxels with less than
�50HU (25).

Persistent Homology Computation to Obtain a
Persistence Diagram to Visualize a Homological Feature
of Volumetric CT Data

Homological features of a given volumetric CT data were
extracted by persistent homology using the open source
program Cubical Ripser (https://github.com/shizuo-kaji/
CubicalRipser_3dim) (26). The mathematical details are

described in the APPENDIX. Each three-dimensional volume
of the segmented lung region provided a triple persistence
diagram, in which the CT values for the birth and death of
connected components (H0), tunnels (H1), and voids (H2)
were visualized separately (Fig. 1A). Each point in the plot
at (x, y) in the persistence diagram represents a topological
feature that emerges at the CT value y and disappears at the
CT value x.

Unsupervised Analysis of the Persistence Diagram
Using Principal Component Analysis

To confirm the potential of the persistence diagrams rep-
resenting homological features of volumetric CT to differen-
tiate different lung diseases, triple persistence diagrams (H0,
H1, and H2) were vectorized (600 dimensions) and processed
with principal component analysis (PCA).

Persistence Diagrams of the Cubic Regions of Interest
for Fibrosis, Emphysema, and Normal Regions on CT

To explore the rigorous definitions of fibrosis and emphy-
sema regions on CT using persistent homology, cubic
regions of interest (ROIs; 25� 25� 25 voxels; n = 543) for fi-
brosis (n = 132), emphysema (n = 182), and normal regions
(n = 229) were selected from the volumetric CT of the 45 sub-
jects in the first dataset and computed to generate the per-
sistence diagram for each ROI (Fig. 1B). Based on the
guidelines for the diagnosis of IPF (20), regions with honey-
comb cysts and reticular shadows, but not pure ground-glass
opacification (GGO), were identified as ROIs for IPF-related
fibrosis. Because the voxel resolutions were 0.683�0.683�
0.5mm and 0.625�0.625�0.5mm for the male and female
subjects, respectively, the sizes of the ROIs were 17.1� 17.1�
12.5mm and 15.6� 15.6� 12.5mm for the male and female

Figure 1. Computed tomography images of whole lungs and regions of interest and persistence diagram. A: an example of a coronal computed tomog-
raphy image with idiopathic pulmonary fibrosis (IPF) and persistence diagrams including dimensions 0 (H0), 1 (H1), and 2 (H2). B: normal, fibrosis, and em-
physema regions of interest (ROIs) were selected from the first dataset of control, IPF, and chronic obstructive pulmonary disease lungs, respectively.
The size of the ROI was 25�25�25 voxels. The persistence diagrams were computed for dimensions 0 (H0), 1 (H1), and 2 (H2).
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subjects, respectively. Generally, the size of individual hon-
eycomb cysts is 2–3mm in diameter, although larger honey-
comb cysts may be present in some IPF lungs (7, 27).
Therefore, the 25� 25� 25 voxel ROI size was chosen
because the corresponding sizes (17.1� 17.1� 12.5mm and
15.6� 15.6� 12.5mm) were considered to include multiple
honeycomb cysts and allow robust segmentations for cysts.

Decision Tree Models to Classify ROIs into Fibrosis,
Emphysema, and Normal Regions by Their Persistence
Diagrams

Because it is clinically important to find a small set of
interpretable variables that considerably affect the diag-
nosis, a single set of variables on the persistence diagram
for each fibrosis and emphysema that can discern the
type of lesion was searched. For this purpose, decision
tree models were trained to classify ROIs (normal, fibro-
sis, and emphysema) based on persistence diagrams.
After visually labeling all the ROIs, an automatic grid
search was performed to identify the dimensions (H0, H1,
or H2), birth, and lifetime (difference between birth and
death) characterizing cycles for fibrosis and emphysema
on the persistence diagram with the highest classification
accuracy.

Calculation of the Cycle Density for Fibrosis and
Emphysema for Each CT Voxel

By using the definition of the cycles for fibrosis and em-
physema on persistence diagrams, the density of these
cycles in the neighborhood of each voxel was measured
throughout the lungs. More specifically, for each voxel, the
sum of the number of fibrotic (emphysematous) cycles
weighted by the Gaussian kernel e

�u2
12 was computed, where u

denotes the distance between the voxel and birth location of
the cycle. In this equation, we chose 12 as the window param-
eter in conjunction with the general size of honeycomb cysts
(2–3mm in diameter) (7, 27). Following the calculation of the
cycle density, each voxel was assigned to fibrosis, emphy-
sema, and normal voxels based on the threshold values for
the cycle density for fibrosis and emphysema.

Dice Coefficients

The segmentation quality was evaluated by the Dice coef-
ficients (28), which quantified the similarity between a given
segmentation method and the manual segmentation that
was considered the reference. Interobserver variability was
assessed by comparing the reference manual segmentation
and the other manual segmentation by an independent
analyst.

Statistics

Statistical analyses were performed in R (29). Multiple
comparisons of the cycle density, persistent homology-
defined fibrosis and emphysema were performed with one-
way ANOVA followed by Tukey’s test and the Kruskal-Wallis
test followed by Dunn’s test (30). The correlations were
tested using the Pearson and Spearman correlation tests,
and the mortality between two groups was evaluated using
Kaplan-Meier survival curves with log-rank tests.

RESULTS

Table 1 shows the demographics of the two independent
datasets, including control, IPF without emphysema, and
COPD (n = 15 for each) in the first dataset and IPF without
emphysema, CPFE, and COPD (n = 30 for each) in the second
dataset. The severity of COPD assessed by FEV1 (%predicted)
did not differ between the first and second datasets (83% and
85%; P = 0.20), and the severity of IPF assessed by DLCO (%
predicted) and CPI did not differ between them (DLCO: 50%
and 46%, P = 0.47; CPI: 47 and 48, P = 0.85).

The persistence diagrams for H0, H1, andH2 were obtained
from all the CT scans in the first dataset, vectorized, and
processed with PCA (Fig. 1). The explained variances of the
first two components were 73.58% and 23.63%, with a total of
97.17%, and each case was plotted as a point using the two
components (Fig. 2A). The plot showed that points from the
IPF and COPD subjects and controls were separated from
each other. Furthermore, each case from the second dataset
was plotted using the first and second principal components

Table 1. Demographics of the two datasets

1st Data (Discovery) 2nd Dataset (Validation)

Control IPF COPD CPFE IPF COPD

n 15 15 15 30 30 30
Age, yr 62 ± 12 64 ± 10† 74 ± 6 74 ± 8 73 ± 8† 70 ± 10
Male, % 27% 67% 100% 80% 90% 90%
Height, cm 156 ± 10 163 ± 7 165 ±6 162 ± 7 164 ± 6 161 ± 6
Weight, kg 56 ± 11 64 ± 13 57 ± 6 62 ± 12 63 ± 12 59 ± 10
Smoking, pack-yr 0 ± 0 45 ±52 53 ±23 59 ±26 29 ±20 61 ± 30
FVC (%predicted), % 97 ± 9 73 ± 16 93 ± 16 93 ±20 82 ±22 90 ± 18
FEV1 (%predicted), % 96 ± 10 83 ± 14 54 ± 18 85 ± 19 90 ±22 58±20
FEV1/FVC, % 78 ± 4 89 ±6 45 ± 12 72 ± 14 85 ± 7 50 ± 15
DLCO, %predicted� NA 50± 13 53 ± 21 42 ± 12 46 ± 16 58 ± 16
CPI� NA 47 ± 12 26 ± 13 43 ± 12 48 ± 14 25 ± 11

Values are means ± SD. FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity. �Diffusion capacity of the lung for carbon
monoxide (DLCO) was measured in 14 idiopathic pulmonary fibrosis (IPF) and 15 combined pulmonary fibrosis and emphysema (COPD)
subjects but not in the controls in the first dataset and in 29 IPF, 29 combined pulmonary fibrosis and emphysema (CPFE), and 30 COPD
subjects in the second dataset. The composite physiological index (CPI) was calculated in subjects whose DLCO was measured. †Age
in subjects with IPF significantly differed between the 2 groups (P = 0.001), while other variables did not differ between the datasets in
subjects with IPF and COPD.
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obtained in the first dataset (Fig. 2B). There was a tendency
toward separation between the plots from the CPFE, COPD,
and IPF subjects, although the first dataset did not contain
CPFE subjects. Additionally, the first two principal compo-
nents were associated with DLCO (r=0.67, P < 0.001) and CPI
(r=0.72, P < 0.001) (Fig. 2, C and D). These data suggest that
the characteristics of CT images for each disease are encoded
in the persistence diagram.

The decision tree models classified the persistence dia-
grams of ROIs for fibrosis (n = 132), emphysema (n = 182), and
normal regions (n = 229) (Fig. 3A). The ROI for fibrosis was
accounted for by cycles with dimension=2, �1,260<birth <
�380, and 360< lifetime < 1. The ROI for emphysema was
accounted for by cycles with dimension=0, �1,020<birth <
�900, and 20< lifetime<90. Furthermore, when the cycle
density for fibrosis in the neighborhood of a given voxel was
above the threshold of 1.0, the voxel was considered persistent
homology-defined fibrosis. For the remaining voxels, when
the cycle density for emphysema in the neighborhood of a
given voxel was above the threshold of 8.3, the voxel was con-
sidered persistent homology-defined emphysema. The confu-
sion matrix in Fig. 3A shows that no ROI for fibrosis was
assigned to persistent homology-defined emphysema and no
ROI for emphysema was assigned to persistent homology-
defined fibrosis. The sensitivities of persistent homology-
based classification of fibrosis and emphysema were 0.93 and
0.89, and the specificities were 0.97 and 0.85, respectively.
Figure 3B compares the persistence diagrams with the estab-
lished definition of the cycles for fibrosis and emphysema in

normal, fibrosis, and emphysema ROIs. Figure 3C shows
examples of the localization of persistent homology-defined
fibrosis and emphysema on CT. The volume percentage of
persistent homology-defined fibrosis to the whole lung (PH-fi-
brosis%) was significantly higher in the subjects with IPF than
in the controls and subjects with COPD (16.60±0.130%,
0.69±0.01%, and 0.40±0.00%, respectively), whereas the
volume percentage of persistent homology-defined emphy-
sema (PH-emphysema%) was significantly higher in the sub-
jects with COPD than in the controls and subjects with IPF
(17.60±0.20%, 0.03±0.00%, and 0.13±0.00%, respectively).

Next, the validity of the persistent homology-based local-
ization of fibrosis and emphysema was confirmed in the sec-
ond dataset that included 30 CPFE subjects, 30 IPF subjects
without visual emphysema on CT, and 30 COPD subjects.
The persistent homology-based segmentations identified fi-
brosis and emphysema regions in a CPFE subject, although
CPFE subjects were not included in the first dataset (Fig. 4).
The segmentation quality for the persistent homology-based
method on the CT scans of IPF and CPFE lungs was compa-
rable to that for the DL-based method and superior to that
for the conventional thresholding method. Notably, honey-
comb regions were clearly differentiated from emphysema-
tous regions by persistent homology-based segmentation
and DL-based segmentation, whereas thresholding misclas-
sified the true honeycomb regions as emphysema regions.

Table 2 compares the segmentation quality between differ-
ent segmentationmethods using manual segmentation as the
reference. Representative images are shown in Supplemental

Figure 2. Principal component analysis of vector-
ized persistence diagrams from different dis-
eases was performed. Each case in the 1st
dataset was plotted using the 1st and 2nd princi-
pal components (A). In the 2nd dataset, with the
use of the 1st and 2nd principal components
obtained in the 1st dataset, each case from the
2nd dataset was plotted (B). Associations of the
1st 2 principal components in the second dataset
with diffusion capacity for carbon monoxide
(DLCO) and the composite physiological index
(CPI) are shown (C and D). With the use of the
coordinates of the 2 principal components as ex-
planatory variables, a linear regression model for
the target variable was fitted for the second data-
set. The x-axis indicates the predicted value, and
the y-axis indicates the real target value. IPF, idio-
pathic pulmonary fibrosis; COPD, chronic ob-
structive pulmonary disease; CPFE, combined
pulmonary fibrosis and emphysema.
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Fig. S1 (all Supplemental material is available at https://doi.
org/10.6084/m9.figshare.14554170). The PH-fibrosis% and
DL-based fibrosis% were similarly correlated with fibrosis%
measured using the reference manual segmentation (r = 0.85,
P < 0.001 and r = 0.87, P < 0.001). The PH-emphysema% and
DL-based emphysema% were also similarly correlated with
emphysema%measured using the reference manual segmen-
tation (r = 0.93, P < 0.001 and r = 0.93, P < 0.001). Moreover,

the Dice coefficients for segmentation of fibrosis and emphy-
sema in the persistent homology-based method were compa-
rable to those in the DL-based method and the independent
analyst’s manual segmentation representing interobserver
variability.

Table 3 compares fibrosis% and emphysema% measured
using different segmentation methods in the second dataset.
PH-fibrosis% and DL-based fibrosis% were comparable to

Figure 3. A decision tree model was established to define persistent homology-based fibrosis and emphysema and representative regions of interest
(ROIs) based on a persistent diagram. A: persistence diagram. The persistent homology-based definition of fibrosis identified 169 of the 182 ROIs with fi-
brosis. The persistent homology-based definition of emphysema was then applied to identify ROIs with emphysema. B: the persistence diagrams of 3
ROIs representing normal, fibrosis and emphysema showed different distributions of cycles on their persistence diagrams. The red solid regions indicate
the definition of the fibrosis cycle on the dimension 2 diagram (H2). The red dashed regions indicate the definition of the emphysema cycle on dimension
0 (H0). C: examples of the persistent segmentation of fibrosis (red) in idiopathic pulmonary fibrosis (IPF) lungs and emphysema (blue) in chronic obstruc-
tive pulmonary disease (COPD) lungs.

Figure 4. A: an example of clear separation of fibrosis (red) and emphysema (blue) regions on computed tomography (CT) from the combined pulmonary
fibrosis and emphysema (CPFE) in the second dataset using persistent homology (PH). B: persistent homology-based segmentation was comparable to
the deep learning-based segmentation method and superior to conventional thresholding. Red and blue colors indicate regions classified as fibrosis
and emphysema based on each segmentation method. IPF, idiopathic pulmonary fibrosis.
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each other and significantly higher than the high attenua-
tion area% measured with thresholding in subjects with IPF
and CPFE. PH-emphysema% and DL-based emphysema%
were comparable to each other and lower than the low
attenuation area% measured with thresholding in subjects
with COPD.

Table 4 shows that PH-emphysema% was associated with
DLCO in subjects with COPD (r = �0.66, P < 0.001). PH-fibro-
sis% was associated with DLCO and CPI in subjects with IPF
(r = �0.71, P < 0.001, and r = 0.63, P< 0.001), whereas PH-fi-
brosis% was associated with CPI but not with DLCO in sub-
jects with CPFE (r = 0.59, P < 0.001, and r = �0.31, P = 0.10).
The sum of PH-fibrosis% and PH-emphysema% was associ-
ated with DLCO in the subjects with IPF, CPFE, and COPD (r =
�0.58, P < 0.001) (Fig. 5A). The CPI was also associated with
PH-fibrosis% in the subjects with IPF and CPFE (r=0.70, P <
0.001) (Fig. 5B). The 5-yr mortality rate did not differ
between the subjects with CPFE and IPF (Fig. 5C). In con-
trast, when subjects with CPFE and IPF were divided into a
high-persistent homology-defined group and a low-persis-
tent homology-defined group based on PH-fibrosis%, the
high-persistent homology-defined fibrosis group showed an
increase in mortality compared with the low-persistent
homology-defined fibrosis group (Fig. 5D).

DISCUSSION

The present study used persistent homology to mathemati-
cally define two major lung abnormalities, fibrosis and em-
physema, on volumetric CT. The analyses of the first dataset
established the specific cycles on the persistence diagrams re-
sponsible for fibrosis and emphysema, and then the validity
of the definition was examined from both a radiological per-
spective and associations with physiological impairments and
clinical outcomes using the independent second dataset. The
proposed method is an important step for accurate computer-
ized evaluation of lung fibrosis that can manifest on CT with
low attenuation structures (traction bronchiectasis and hon-
eycomb cysts), which is difficult to distinguish from emphy-
sema. Additionally, the efficient segmentations of fibrosis and
emphysema in this study suggest that the principles of persis-
tent homology have the potential to characterize local abnor-
malities and may provide new topological insights into the
progression of emphysematous and fibrotic abnormalities.

In the present study, independent datasets were used for
development and validation to demonstrate the generaliz-
ability of the proposed method. Although automatic seg-
mentation of emphysematous regions within fibrotic regions
in CPFE lungs is considered challenging (10), the proposed
homological definitions of fibrosis and emphysema using
persistent homology have demonstrated notable capacity to
differentiate among CPFE, COPD and IPF. Additionally, per-
sistent homology-based segmentations were validated by
confirming that PH-emphysema% was associated with DLCO

in subjects with COPD, whereas PH-fibrosis% was associated
with DLCO and CPI in subjects with IPF. Notably, the finding
that PH-fibrosis% was significantly associated with CPI but
not with DLCO in subjects with CPFE is in line with a previous
paper by Wells et al. (21), who established CPI to estimate the
extent of fibrosis on CT in IPF subjects with emphysema
more accurately than DLCO.

Furthermore, significant associations were found between
DLCO and the sum of PH-fibrosis% and PH-emphysema% in
the subjects with CPFE, COPD, and IPF, as well as between
the CPI and PH-fibrosis% in the subjects with CPFE and IPF.
While the 5-yr mortality rate did not differ between the sub-
jects with CPFE and IPF, persistent homology-defined fibro-
sis accounted for mortality in these populations. This
finding is consistent with a previous report that the visual
CT findings of emphysema did not affect mortality in

Table 2. Correlation coefficients for fibrosis and emphysema percentages and Dice coefficients between the manual
segmentation and each segmentation method

Persistent Homology Deep Learning Thresholding Independent Manual

Correlation coefficients (each method vs. manual)
Fibrosis% r = 0.86

P < 0.001
r = 0.85
P < 0.001

r = 0.84
P < 0.001

r = 0.86
P < 0.001

Emphysema% r = 0.93
P < 0.001

r = 0.93
P < 0.001

r = 0.79
P < 0.001

r = 0.94
P < 0.001

Dice coefficients (each method vs. manual)
Fibrosis 0.46 ±0.14 0.59 ±0.11 0.11 ± 0.05 0.58 ±0.14
Emphysema 0.46 ±0.18 0.38 ±0.16 0.18 ± 0.08 0.46 ±0.18

Values are means ± SD. Correlation coefficients were measured using Spearman correlation tests. The percentages of fibrosis and em-
physema were compared between each segmentation method and the reference manual segmentation. High and low attenuation regions
were segmented as fibrosis and emphysema in the thresholding method. An independent analyst performed manual segmentations of fi-
brosis and emphysema, which were compared with the reference manual segmentation to estimate the interobserver variability.

Table 3. Comparisons of the extents of fibrosis and em-
physema quantified with different segmentation methods
in the second dataset

Persistent Homology Deep Learning Thresholding

Fibrosis%
IPF 11.8 ± 9.1� 11.3 ± 5.3� 4.7 ± 2.2
CPFE 9.3 ± 10.1� 9.9 ± 5.7� 3.9 ± 2.2
COPD 0.4 ± 0.5�† 2.3 ± 0.8� 1.7 ± 0.3

Emphysema%
IPF 0.2 ± 0.4� 0.9 ± 1.2� 14.2 ± 4.6
CPFE 8.5 ± 8.9� 4.4 ± 3.7� 21.1 ± 6.7
COPD 8.9 ± 12.2� 4.2 ± 4.8� 26.0 ± 7.6

Values are means ± SD. Multiple comparisons of fibrosis% and
emphysema% among persistent homology, deep learning, and
thresholding were performed using Tukey’s method. IPF, idio-
pathic pulmonary fibrosis; CPFE, combined pulmonary fibrosis
and emphysema; COPD, chronic obstructive pulmonary disease.
�P < 0.05, compared with thresholding. †P < 0.05, compared with
deep learning.
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subjects with IPF (10). Collectively, these findings suggest
that the persistent homology-based evaluation of structural
abnormalities in diseases should be promising for future
physiological investigation and clinical use.

The persistent homology-based analysis methodology
developed in this study provides general techniques for volu-
metric image analysis not restricted to medical sciences.
Persistent homology in its original form focuses on the global
structure; local information is not captured. To localize the
topological feature of the image, we introduced the idea of
cycle density utilizing the location of persistent homology
cycles. Furthermore, a method utilizing a shallow decision
tree was introduced to achieve a simple and interpretable def-
inition of the characteristic cycles. The persistent homology
output is a persistence diagram that cannot be directly used
with standard statistical techniques. Vectorization (31) is often
performed to convert a persistence diagram into a vector as a
preprocess for further analysis. Vectorization was used to
assess the relevance of persistent homology to the present
study by investigating the persistence diagram of the whole
lung in the first dataset in an unsupervisedmanner. However,
simplicity and interpretability, which are critical in medical
applications, may be lost with vectorization. Thus we

developed a novel analysis using a shallow decision tree.
Overall, statistics and domain expertise were combined to
provide a definition of characteristic cycles, while the use of
domain expertise was restricted to the selection of the ROIs,
limiting the effect and source of bias from humans.

Three-dimensional computation of volumetric CT data was
performed to directly generate persistence diagrams encoding
local topological features. Unsupervised analysis with the first
dataset showed that the controls, IPF subjects, and COPD sub-
jects were discernable by the persistence diagrams of the
whole lung CT images, suggesting that the entire collection of
births and deaths of connected components (H0), tunnels
(H1), and voids (H2) could carry distinct information on the ra-
diological features for each disease. This finding is in sharp
contrast to the fact that DL-basedmethods depend on numer-
ous “training images” generated through two-dimensional
visual inspection by expert radiologists.

The fibrotic regions were defined as voxels whose neighbor-
ing voxels contained cycles with longer lifetimes on the persist-
ence diagrams of dimension 2 (H2). To interpret the persistent
homology-defined fibrosis radiologically, the representative
CT ROIs were binarized using different thresholds (Fig. 6).
The H2 cycle (void) was identified on binary images of

Table 4. Physiological impacts of persistent homology-defined fibrosis and emphysema in subjects with COPD,
CPFE, and IPF in the second dataset

Persistent Homology Fibrosis Persistent Homology Emphysema

CPFE IPF COPD CPFE IPF COPD

DLCO r = �0.31
P = 0.10

r = �0.71
P < 0.001

r = 0.05
P = 0.77

r = �0.05
P = 0.79

r = �0.23
P = 0.23

r = �0.66
P < 0.001

CPI r = 0.59
P < 0.001

r = 0.63
P < 0.001

r = �0.05
P = 0.78

r = �0.05
P = 0.79

r = 0.25
P = 0.20

r = 0.29
P = 0.13

Values are the Spearman correlation coefficients and P values. IPF, idiopathic pulmonary fibrosis; CPFE, combined pulmonary fibrosis
and emphysema; COPD, chronic obstructive pulmonary disease; DLCO, diffusion capacity of the lung for carbon monoxide; CPI, compos-
ite physiological index.

Figure 5. Physiological and clinical impacts of the
volume percentages of persistent homology-based
fibrosis and emphysema (PH-fibrosis% and PH-em-
physema%) were evaluated in the 2nd dataset. A: the
sum of PH-fibrosis% and PH-emphysema% was asso-
ciated with the diffusion capacity of the lung for car-
bon monoxide (DLCO) in subjects with idiopathic
pulmonary fibrosis (IPF), combined pulmonary fibro-
sis and emphysema (CPFE), and chronic obstructive
pulmonary disease (COPD) (n =30 for each group). B:
the composite physiological index (CPI) was associ-
ated with PH-fibrosis% in subjects with IPF and CPFE.
C: the 5-yr mortality rate did not differ between sub-
jects with CPFE and IPF. D: however, when subjects
with CPFE and IPF were divided based on the me-
dian PH-fibrosis%, a high-PH-fibrosis group showed
an increase in mortality compared with a low-PH-fi-
brosis group.
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honeycomb cysts with both dense and sparse walls and GGOs
when the threshold CT value was set to greater than �900
HU. In contrast, when the threshold was changed to greater
than�1,000HU, theH2 cycle was identified on binary images
of cysts with both dense and sparse walls but not GGOs. These
changes resulted in longer and moderate lifetimes in cysts
with dense and sparse walls, respectively, which were mainly
identified as persistent-defined fibrosis. Notably, the size of
the honeycomb cysts did not appear to affect lifetime. In con-
trast, the sparse wall surrounding the cysts was associated
with a relatively shorter (moderate) lifetime of H2 cycles, and
pure GGO without reticulations was associated with a very
short lifetime. GGOs are divided into GGOs superimposed by
a reticular pattern (simply termed reticulation) and pure
GGOs, and the latter is not a feature of IPF (20). Because GGO
is considered an early stage of fibrosis in interstitial lung dis-
ease associated with systemic sclerosis (32), a future study
should define GGO using persistent homology and test
whether GGO precedes the honeycomb region in fibrotic lung
diseases not limited to IPF.

Importantly, the finding that the lifetime substantially dif-
fers amongGGOs, cysts with sparse walls, and cysts with dense
walls suggests that local fibrotic progression could be captured
by dynamic changes in the lifetime of H2 cycles when longitu-
dinal data are available. Furthermore, the mathematical defi-
nition of morphological changes would enable establishing a
mathematical disease model to simulate disease progression,
which is difficult to achieve with experts and DL-based seg-
mentations. We believe that this advantage of persistent
homology-based evaluation in conjunction with three-dimen-
sional modeling may uncover the morphological pattern in
the local progression of fibrotic lung diseases in future studies.

The emphysema regionswere defined as voxelswhose neigh-
boring voxels contained more dimension 0 (H0) cycles with

small births and medium lifetimes. This finding is also visual-
ized in Fig. 6, in which the H0 cycles represent regions with
higher density voxels surrounded by lower density voxels.
Previous studies have shown that new regions of emphysema
develop near preexisting regions of emphysema more fre-
quently than other regions far from preexisting emphysema
and can induce the coalescence of twoneighboring emphysema
regions to cause larger emphysema clusters (33, 34). In other
words, new regions of emphysema are less likely to develop ran-
domly in an isolated form (35). Therefore, the increased H0

cycles with lower birth in emphysema regions might reflect
thatmanynormal regions could be isolated by surrounding em-
physema regions that expand and form a network over time.
Furthermore, because a recently introduced nonrigid registra-
tion of paired inspiratory and expiratory CT has allowed identi-
fying emphysema as lower density regions with gas trapping,
which is a main functional impairment in emphysema (36, 37),
whether persistent homology-based emphysema is associated
with emphysematous gas trapping on registered inspiratory
and expiratory CT should be performed in a future study.

We performed DL-based segmentation according to a previ-
ous paper by Kaji et al. (22) that provides a code for generic
image translation algorithms, including the widely used U-
Net (23). Because no previous paper has evaluated the model
performances of U-Net for this specific segmentation problem
of emphysema and fibrosis, we evaluated the performance of
the present DLmodel using manual segmentation as the refer-
ence. As shown in Table 2, DL-based fibrosis% and emphy-
sema%were closely associated with fibrosis% and emphysema
%measured on the reference segmentation, and the Dice coef-
ficients between the DL-based segmentation and the reference
segmentation of fibrosis and emphysema were comparable
to those between the independent analyst’s manual segmenta-
tion and the reference segmentation representing the intero-

Figure 6. Persistence of voids and connected components on binarized images of honeycomb cysts, ground-glass opacification, emphysema, and normal
regions using different computed tomography value thresholds. Cubic regions of interest (ROIs) for fibrotic regions, including a large honeycomb cyst with a
dense wall, a cyst with a dense wall, and a cyst with a sparse wall (A), as well as ground-glass opacification (GGO), a normal control region, and emphysema
(B), were extracted from volumetric computed tomography (CT). Each CT ROI was binarized with a given threshold of CT value, such as greater than �700
HU, greater than�850 HU, greater than�900 HU, greater than�1,000 HU, and greater than�1,100 HU. Notably, the void components (H2) persisted at all
thresholds of greater than �700 HU, greater than �900 HU, and greater than �1,100 HU for cysts with dense walls regardless of the size of the cysts but
not for cysts with sparse walls or GGOs. In contrast, the connected component (H0) appeared at a lower CT value (in this case,�950 HU) in emphysema.
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bserver variability. These results suggest the validity of the
present DL-based segmentationmethods.

The results of segmentation by persistent homology-based
and DL-based methods were not fully consistent. Persistent
homology-based segmentation assigned relatively small cysts
surrounded by fibrotic regions as fibrosis, whereas the deep
learning method did not assign these cysts as fibrosis (Fig. 4).
Differentiating emphysema from honeycomb cysts on CT in
fibrotic lungs is challenging in cases withfibrotic lung diseases,
and large interobserver variation exists to identify honeycomb
cysts on visual inspection (7, 38). Although the present data
confirmed the clinical validity of persistent homology-defined
fibrosis and emphysema by showing the associations of PH-fi-
brosis% and PH-emphysema%with DLCO and the CPI and that
of PH-fibrosis% with mortality, future studies should be per-
formed to compare the persistent homology-based segmenta-
tion of emphysema and fibrosis to corresponding lung
histology and explore pathological changes that persistent
homology-based emphysema and fibrosis can reflect.

Some limitations are worth mentioning. First, all the CT
scans used in this study were reconstructed using a sharp ker-
nel algorithm developed by a single vendor (Canon Medical).
The sharp reconstruction kernel increases image contrast, gen-
eratingmore voxels at CT values less than�1,000 HU than the
soft reconstruction kernel (39). This phenomenon might affect
the present finding that the lower limit for the birth of fibrosis
cycles was�1,60HU. Therefore, whether the proposedmethod
with the same set of parameters can be generalized to CT
images obtained with different conditions remains to be eluci-
dated. However, because the definition of each characteristic
cycle involves only five parameters, namely, the dimension
and the lower and upper limits for birth and lifetime, the pres-
ent methods can be easily adjusted to analyze CT images
reconstructed using a soft kernel algorithm and/or an algo-
rithm from a different vendor. The dimension is fixed, and
the other four values have clear meanings as CT values and
would not change drastically. These four tunable parameters
can be easily determined and used for calibration for different
CT configurations. This is another advantage over DL-based
segmentation methods. Second, most of the subjects in the
two datasets were male. Whether the present findings could
be applied to female subjects should be carefully considered.

In conclusion, this study showed that persistent homology
could be applied to automatically localize major radiological
abnormalities in lung diseases, such as fibrosis and emphy-
sema, on volumetric CT. The data suggest that the lifetime of
void components on the persistence diagrams reflectsmorpho-
logical variability infibrotic changes in IPF, afinding that likely
aids in mathematically defining disease progression patterns
in future longitudinal studies. Therefore, the persistent homol-
ogy-based radiological definition of various pathological
changes is promising for reproducible, quantitative, and inter-
pretable assessments of the complex structural alterations of
chronic lung diseases.

APPENDIX

Persistent Homology Computation

Homological features of a given volumetric CT data
were extracted by persistent homology using the open-

source program Cubical Ripser (https://github.com/shizuo-
kaji/CubicalRipser_3dim) (26). For a CT image, the upper
star-filtered cubical complex was built using the CT value;
that is, a cubical grid was constructed whose vertexes corre-
sponded to the voxels of CT. Each cell (vertex, edge, square, or
cube) is assigned the minimum CT value of its constituent.
The union of all the cells with values greater than a threshold
value t is denoted by Xt. Then, � � � � Xtþ 1 � Xt � Xt�1 � � � �
forms a filtered cell complex. The persistent homology of this
complex was computed in the present study. Another popular
method to create a filtered complex from an image is to take
the distance transform of the binarized image. In the latter,
scale-dependent features are mainly captured. In this study,
the former method was employed because the CT values have
clinical meaning.

Decision Tree Models to Classify the Persistence
Diagram of ROIs

Decision tree models were trained to classify ROIs (nor-
mal, fibrosis, and emphysema) based on persistence dia-
grams. To achieve a simple and interpretable definition of
the characteristic cycles for fibrosis and emphysema, the
number of tree levels was restricted to two. The variable was
assumed to have the form “the density of cycles satisfying (1)
dimension = d (2) a< birth < b (3) p< lifetime < q,”where d,
a, b, p, and q were parameters and lifetime was the differ-
ence between birth and death. These parameters were deter-
mined by an automatic grid search to achieve the highest
classification accuracy.

Computation Requirement and Time

The analyses based on decision tree models, PCA, and
Dice coefficients were performed using the implementation
of scikit-learn (40). Computation of the cycle density and its
visualization were performed by a custom-made Python
script and CuPy (41) with acceleration by a GPU (Nvidia
GeForce RTX 2080). For the learning phase, determining
characteristic cycles by a grid search to establish the decision
tree took approximately an hour for the persistent homol-
ogy-based method, whereas training the DL-model using the
labeled images took a few hours. To process the volume CT
data of a subject, computation of the persistent homology
and density of the characteristic cycles took �20min,
whereas the DL-based method took a few minutes to pro-
duce segmentation using the established trainedmodel.
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