18 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Shock deformation of coarse grain alumina above Hugoniot elastic limit

    No full text
    Symmetric shock experiments were conducted on a 10 mu m grain size coarse alumina ceramic with a gas gun to identify its Hugoniot elastic limit (HEL). To understand the damage initiation and their subsequent growth mechanisms in coarse grain alumina subjected to shock impact at levels much above the HEL, additional asymmetric shock recovery experiments with the same gas gun were then deliberately conducted on the same alumina at shock pressure levels more than three times as high as the HEL and the fragments collected by a dedicated catcher system. Detailed characterization of the shock recovered alumina fragments by X-ray diffraction, nanoindentation, scanning electron microscopy, field emission scanning electron microscopy and transmission electron microscopy were utilized to understand the nature and process of failure initiation, incubational growth, coalescence and propagation leading to fragmentation. Based on these data a new qualitative damage model was developed to explain the deformation mechanism

    Integrating Structural and Functional Imaging for Computer Assisted Detection

    No full text
    ABSTRACT Screening and detection of prostate cancer (CaP) currently lacks an image-based protocol which is reflected in the high false negative rates currently associated with blinded sextant biopsies. Multi-protocol magnetic resonance imaging (MRI) offers high resolution functional and structural data about internal body structures (such as the prostate). In this paper we present a novel comprehensive computer-aided scheme for CaP detection from high resolution in vivo multi-protocol MRI by integrating functional and structural information obtained via dynamic-contrast enhanced (DCE) and T2-weighted (T2-w) MRI, respectively. Our scheme is fully-automated and comprises (a) prostate segmentation, (b) multimodal image registration, and (c) data representation and multi-classifier modules for information fusion. Following prostate boundary segmentation via an improved active shape model, the DCE/T2-w protocols and the T2-w/ex vivo histological prostatectomy specimens are brought into alignment via a deformable, multi-attribute registration scheme. T2-w/histology alignment allows for the mapping of true CaP extent onto the in vivo MRI, which is used for training and evaluation of a multi-protocol MRI CaP classifier. The meta-classifier used is a random forest constructed by bagging multiple decision tree classifiers, each trained individually on T2-w structural, textural and DCE functional attributes. 3-fold classifier cross validation was performed using a set of 18 images derived from 6 patient datasets on a per-pixel basis. Our results show that the results of CaP detection obtained from integration of T2-w structural textural data and DCE functional data (area under the ROC curve of 0.815) significantly outperforms detection based on either of the individual modalities (0.704 (T2-w) and 0.682 (DCE)). It was also found that a meta-classifier trained directly on integrated T2-w and DCE data (data-level integration) significantly outperformed a decision-level meta-classifier, constructed by combining the classifier outputs from the individual T2-w and DCE channels

    Indentation size effect of alumina ceramic shocked at 12 GPa

    No full text
    The motivation behind this study was the urge to understand how the high strain rate flyer plate impact affects the nanohardness of alumina ceramics. Therefore, the load controlled nanoindentation experiments were conducted with a Berkovich indenter on an as received coarse grain (similar to 10 mu m), high density (similar to 3.98 g.cm(3)) alumina and the shock recovered tiny fragments of the same alumina. The shocked alumina fragments were obtained from an earlier flyer plate shock impact study in a two stage gas gun. The nanohardness of the as received alumina was much higher than that of the shocked alumina. The shocked alumina showed a relatively much stronger indentation size effect (ISE) while the as received alumina exhibited a mild ISE. A new explanation was given for the presence of the relatively strong ISE in the shock recovered alumina. Additional characterizations such as scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy and analysis of the experimental load depth data were utilized for this purpose. Finally, a new, qualitative model was proposed to provide a rational picture of the nanoindentation responses of the as received and shocked alumina ceramics. (C) 2012 Elsevier Ltd. All rights reserved

    Nanohardness of Sintered and Shock Deformed Alumina

    No full text
    To understand how high-strain rate, flyer-plate impact affects the nanohardness of a coarse (similar to 10 mu m) grain, high-density (similar to 3.978 gm cc(-1)) alumina, load controlled nanoindentation experiments were conducted with a Berkovich indenter on as-sintered disks and shock-recovered alumina fragments obtained from an earlier flyer-plate shock impact study. The nanohardness of the shock-recovered alumina was much lower than that of the as-sintered alumina. The indentation size effect was severe in the shock-recovered alumina but only mild in the as-sintered alumina. Extensive additional characterization by field emission scanning electron microscopy, transmission electron microscopy, and analysis of the experimental load depth data were used to provide a new explanation for the presence of strong indentation size effect in the shock-recovered alumina. Finally, a qualitative model was proposed to provide a rationale for the whole scenario of nanoindentation responses in the as-sintered and shock-recovered alumina ceramics

    Nanoindentation of shock deformed alumina

    No full text
    In the current study, the experimental results on the nanoindentation response of both as prepared and shock recovered alumina of 10 mu m grain size and identical processing history are presented and analyzed. The shock recovery experiments were deliberately conducted with gas gun arrangements at shock pressures much above the Hugoniot Elastic Limit (HEL) of alumina. The nanoindentation experiments were conducted at 10-1000 mN load with a Berkovich indenter. The nanohardness and Young's modulus value of shock recovered alumina were always lower than those of the as prepared alumina samples. Subsequently, the detailed characterizations of the shock recovered alumina samples by X-ray diffraction, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were utilized to understand the reasons behind the drop in nanohardness and Young's modulus of shock recovered alumina samples. (C) 2010 Elsevier B.V. All rights reserved
    corecore