21 research outputs found

    High Resolution Methylome Map of Rat Indicates Role of Intragenic DNA Methylation in Identification of Coding Region

    Get PDF
    DNA methylation is crucial for gene regulation and maintenance of genomic stability. Rat has been a key model system in understanding mammalian systemic physiology, however detailed rat methylome remains uncharacterized till date. Here, we present the first high resolution methylome of rat liver generated using Methylated DNA immunoprecipitation and high throughput sequencing (MeDIP-Seq) approach. We observed that within the DNA/RNA repeat elements, simple repeats harbor the highest degree of methylation. Promoter hypomethylation and exon hypermethylation were common features in both RefSeq genes and expressed genes (as evaluated by proteomic approach). We also found that although CpG islands were generally hypomethylated, about 6% of them were methylated and a large proportion (37%) of methylated islands fell within the exons. Notably, we obeserved significant differences in methylation of terminal exons (UTRs); methylation being more pronounced in coding/partially coding exons compared to the non-coding exons. Further, events like alternate exon splicing (cassette exon) and intron retentions were marked by DNA methylation and these regions are retained in the final transcript. Thus, we suggest that DNA methylation could play a crucial role in marking coding regions thereby regulating alternative splicing. Apart from generating the first high resolution methylome map of rat liver tissue, the present study provides several critical insights into methylome organization and extends our understanding of interplay between epigenome, gene expression and genome stability

    A New Triterpenoid Saponin and Antimicrobial Activity of Ethanolic Extract from Sapindus mukorossi Gaertn.

    No full text
    A new acetylated triterpenoid saponin elucidated as hederagenin-3-O-β-D-xylopyranosyl (2→1)-[3-O-acetyl-α-L-arabinopyranosyl-28-O-α-L-rhamnopyranosylester has been isolated from pericarps of Sapindus mukorossi Gaertn. The structure of the compound was determined by means of chemical and spectral analysis including advanced 2D NMR studies. The ethanolic extract from pericarps of the plant showed significant in vitro antimicrobial activity against various test organisms by Agar well diffusion method

    Looking for Broken TAD Boundaries and Changes on DNA Interactions: Clinical Guide to 3D Chromatin Change Analysis in Complex Chromosomal Rearrangements and Chromothripsis

    No full text
    International audienceApparition of next-generation sequencing (NGS) was a breakthrough on knowledge of genome structure. Bioinformatic tools are a key point to analyze this huge amount of data from NGS and characterize the three-dimensional organization of chromosomes. This chapter describes usage of different browsers to explore publicly available online data and to search for possible 3D chromatin changes involved during complex chromosomal rearrangements as chromothripsis. Their pathogenic impact on clinical phenotype and gene misexpression can also be evaluated with annotated databases

    Determination of homocysteine thiolactone, reduced homocysteine, homocystine, homocysteine–cysteine mixed disulfide, cysteine and cystine in a reaction mixture by overimposed pressure/voltage capillary electrophoresis

    No full text
    An elevated level of thiol amino acid homocysteine is associated with several complex disorders. Homocysteine ability to bind proteins, thereby modulating their structure and function, is proposed to be one of the mechanisms of homocysteine induced pathogenecity. Homocysteine and homocysteine thiolactone bind to protein cysteine and lysine residues respectively. A major hurdle in studying protein homocysteinylation is the lack of suitable analytical techniques to determine simultaneously the concentrations of reduced and oxidized forms of homocysteine and cysteine (especially homocysteine–cysteine mixed disulfide) together with thiolactone formed during the reaction of homocysteine or thiolactone with proteins. Herein we report a capillary electrophoresis method to determine simultaneously the levels of these intermediates. For this 40 mmol/L Tris phosphate buffer at (pH 1.60) was used as running electrolyte, and the separation was performed by the simultaneous application of a CE voltage of 15 kV and an overimposed pressure of 0.1 psi. A rapid separation of these intermediates in less than 6 min with a good reproducibility of both peak areas (CV < 2%) and migration time (CV < 0.2%) was obtained. The applicability of our method was validated by incubating reduced homocysteine and albumin and measuring the reaction intermediates in the solution mixture

    Disruption of chromatin organisation causes MEF2C gene overexpression in intellectual disability: a case report

    No full text
    BACKGROUND: Balanced structural variants are mostly described in disease with gene disruption or subtle rearrangement at breakpoints. CASE PRESENTATION: Here we report a patient with mild intellectual deficiency who carries a de novo balanced translocation t(3;5). Breakpoints were fully explored by microarray, Array Painting and Sanger sequencing. No gene disruption was found but the chromosome 5 breakpoint was localized 228-kb upstream of the MEF2C gene. The predicted Topologically Associated Domains analysis shows that it contains only the MEF2C gene and a long non-coding RNA LINC01226. RNA studies looking for MEF2C gene expression revealed an overexpression of MEF2C in the lymphoblastoid cell line of the patient. CONCLUSIONS: Pathogenicity of MEF2C overexpression is still unclear as only four patients with mild intellectual deficiency carrying 5q14.3 microduplications containing MEF2C are described in the literature. The microduplications in these individuals also contain other genes expressed in the brain. The patient presented the same phenotype as 5q14.3 microduplication patients. We report the first case of a balanced translocation leading to an overexpression of MEF2C similar to a functional duplication.status: publishe

    Disruption of chromatin organisation causes MEF2C gene overexpression in intellectual disability: a case report

    No full text
    International audienceBACKGROUND:Balanced structural variants are mostly described in disease with gene disruption or subtle rearrangement at breakpoints.CASE PRESENTATION:Here we report a patient with mild intellectual deficiency who carries a de novo balanced translocation t(3;5). Breakpoints were fully explored by microarray, Array Painting and Sanger sequencing. No gene disruption was found but the chromosome 5 breakpoint was localized 228-kb upstream of the MEF2C gene. The predicted Topologically Associated Domains analysis shows that it contains only the MEF2C gene and a long non-coding RNA LINC01226. RNA studies looking for MEF2C gene expression revealed an overexpression of MEF2C in the lymphoblastoid cell line of the patient.CONCLUSIONS:Pathogenicity of MEF2C overexpression is still unclear as only four patients with mild intellectual deficiency carrying 5q14.3 microduplications containing MEF2C are described in the literature. The microduplications in these individuals also contain other genes expressed in the brain. The patient presented the same phenotype as 5q14.3 microduplication patients. We report the first case of a balanced translocation leading to an overexpression of MEF2C similar to a functional duplication

    4D genome rewiring during oncogene-induced and replicative senescence

    Get PDF
    To understand the role of the extensive senescence-associated 3D genome reorganization, we generated genome-wide chromatin interaction maps, epigenome, replication-timing, whole-genome bisulfite sequencing, and gene expression profiles from cells entering replicative senescence (RS) or upon oncogene-induced senescence (OIS). We identify senescence-associated heterochromatin domains (SAHDs). Differential intra- versus inter-SAHD interactions lead to the formation of senescence-associated heterochromatin foci (SAHFs) in OIS but not in RS. This OIS-specific configuration brings active genes located in genomic regions adjacent to SAHDs in close spatial proximity and favors their expression. We also identify DNMT1 as a factor that induces SAHFs by promoting HMGA2 expression. Upon DNMT1 depletion, OIS cells transition to a 3D genome conformation akin to that of cells in replicative senescence. These data show how multi-omics and imaging can identify critical features of RS and OIS and discover determinants of acute senescence and SAHF formation.Work at the M.A.M.-R. lab was supported by the European Research Council under the 7th Framework Program FP7/2007-2013 (ERC grant agreement 609989), the European Union’s Horizon 2020 research and innovation programme (grant agreement 676556), the Ministry of Economy and Competitiveness (BFU2017-85926-P), and the Agència de Gestió d’Ajuts Universitaris i de Recerca, AGAUR (SGR468). Work at CRG, BIST, and UPF was in part funded by the Spanish Ministry of Economy and Competitiveness, ‘‘Centro de Excelencia Severo Ochoa 2013-2017’’ (SEV-2012-0208), and ‘‘Centro de Excelencia María de Maeztu 2016-2019.’’ This article/publication is based upon work from COST Action CA18127, supported by COST (European Cooperation in Science and Technology
    corecore