6 research outputs found

    Editorial: Insights in pain mechanisms 2022

    Get PDF

    Sensory neuron–derived NaV1.7 contributes to dorsal horn neuron excitability

    Get PDF
    Expression of the voltage-gated sodium channel NaV1.7 in sensory neurons is required for pain sensation. We examined the role of NaV1.7 in the dorsal horn of the spinal cord using an epitope-tagged NaV1.7 knock-in mouse. Immuno–electron microscopy showed the presence of NaV1.7 in dendrites of superficial dorsal horn neurons, despite the absence of mRNA. Rhizotomy of L5 afferent nerves lowered the levels of NaV1.7 in the dorsal horn. Peripheral nervous system–specific NaV1.7 null mutant mice showed central deficits, with lamina II dorsal horn tonic firing neurons more than halved and single spiking neurons more than doubled. NaV1.7 blocker PF05089771 diminished excitability in dorsal horn neurons but had no effect on NaV1.7 null mutant mice. These data demonstrate an unsuspected functional role of primary afferent neuron-generated NaV1.7 in dorsal horn neurons and an expression pattern that would not be predicted by transcriptomic analysis

    Chronic pregabalin treatment protects against spreading depolarization and alters hippocampal synaptic characteristics in a model of familial hemiplegic migraine-type 1

    No full text
    Abstract Familial hemiplegic migraine type-1 (FHM-1) is a form of migraine with aura caused by mutations in the P/Q-type (Cav2.1) voltage-gated calcium channel. Pregabalin, used clinically in the treatment of chronic pain and epilepsy, inhibits P/Q-type calcium channel activity and recent studies suggest that it may have potential for the treatment of migraine. Spreading Depolarization (SD) is a neurophysiological phenomenon that can occur during migraine with aura by propagating a wave of silenced neuronal function through cortex and sometimes subcortical brain structures. Here, utilizing an optogenetic stimulation technique optimized to allow for non-invasive initiation of cortical SD, we demonstrate that chronic pregabalin administration [12 mg/kg/day (s.c.)] in vivo increased the threshold for cortical spreading depolarization in transgenic mice harboring the clinically-relevant Cav2.1S218L mutation (S218L). In addition, chronic pregabalin treatment limited subcortical propagation of recurrent spreading depolarization events to the striatum and hippocampus in both wild-type and S218L mice. To examine contributing underlying mechanisms of action of chronic pregabalin, we performed whole-cell patch-clamp electrophysiology in CA1 neurons in ex vivo brain slices from mice treated with chronic pregabalin vs vehicle. In WT mice, chronic pregabalin produced a decrease in spontaneous excitatory postsynaptic current (sEPSC) amplitude with no effect on frequency. In contrast, in S218L mice chronic pregabalin produced an increase in sEPSC amplitude and decreased frequency. These electrophysiological findings suggest that in FHM-1 mice chronic pregabalin acts through both pre- and post-synaptic mechanisms in CA1 hippocampal neurons to elicit FHM-1 genotype-specific inhibitory action. The results highlight the potential of chronic pregabalin to limit recurrent SD to subcortical brain structures during pathophysiological events in both the genetically-normal and FHM-1 brain. The work further provides insights into FHM-1 pathophysiology and the potential for chronic pregabalin treatment to prevent SD in migraineurs

    In vivo imaging reveals that pregabalin inhibits cortical spreading depression and propagation to subcortical brain structures

    No full text
    Migraine is characterized by severe headaches that can be preceded by an aura likely caused by cortical spreading depression (SD). The antiepileptic pregabalin (Lyrica) shows clinical promise for migraine therapy, although its efficacy and mechanism of action are unclear. As detected by diffusion-weighted MRI (DW-MRI) in wild-type (WT) mice, the acute systemic administration of pregabalin increased the threshold for SD initiation in vivo. In familial hemiplegic migraine type 1 mutant mice expressing human mutations (R192Q and S218L) in the CaV2.1 (P/Q-type) calcium channel subunit, pregabalin slowed the speed of SD propagation in vivo. Acute systemic administration of pregabalin in vivo also selectively prevented the migration of SD into subcortical striatal and hippocampal regions in the R192Q strain that exhibits a milder phenotype and gain of CaV2.1 channel function. At the cellular level, pregabalin inhibited glutamatergic synaptic transmission differentially in WT, R192Q, and S218L mice. The study describes a DW-MRI analysis method for tracking the progression of SD and provides support and a mechanism of action for pregabalin as a possible effective therapy in the treatment of migraine

    Substance P and pain chronicity

    No full text
    corecore