6 research outputs found

    SmartR: An open-source platform for interactive visual analytics for translational research data.

    Get PDF
    In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical, or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR , a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. Contact: [email protected]. Supplementary information: Supplementary data are available at Bioinformatics online. Availability: : The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR

    Age at onset as stratifier in idiopathic Parkinson’s disease – effect of ageing and polygenic risk score on clinical phenotypes

    Get PDF
    Several phenotypic differences observed in Parkinson’s disease (PD) patients have been linked to age at onset (AAO). We endeavoured to find out whether these differences are due to the ageing process itself by using a combined dataset of idiopathic PD (n = 430) and healthy controls (HC; n = 556) excluding carriers of known PD-linked genetic mutations in both groups. We found several significant effects of AAO on motor and non-motor symptoms in PD, but when comparing the effects of age on these symptoms with HC (using age at assessment, AAA), only positive associations of AAA with burden of motor symptoms and cognitive impairment were significantly different between PD vs HC. Furthermore, we explored a potential effect of polygenic risk score (PRS) on clinical phenotype and identified a significant inverse correlation of AAO and PRS in PD. No significant association between PRS and severity of clinical symptoms was found. We conclude that the observed non-motor phenotypic differences in PD based on AAO are largely driven by the ageing process itself and not by a specific profile of neurodegeneration linked to AAO in the idiopathic PD patients

    Fractalis: A scalable open-source service for platform-independent interactive visual analysis of biomedical data

    No full text
    Background: Translational research platforms share the aim to promote a deeper understanding of stored data by providing visualization and analysis tools for data exploration and hypothesis generation. However, such tools are usually platform-bound and are not easily reusable by other systems. Furthermore, they rarely address access restriction issues when direct data transfer is not permitted. In this article we present an analytical service that works in tandem with a visualization library to address these problems. Findings: Using a combination of existing technologies and a platform-specific data abstraction layer we developed a service that is capable of providing existing web-based data warehouses and repositories with platform-independent visual analytical capabilities. The design of this service also allows for federated data analysis by eliminating the need to move the data directly to the researcher. Instead, all operations are based on statistics and interactive charts without direct access to the dataset. Conclusion: The software presented in this article has a potential to help translational researchers achieve a better understanding of a given dataset and quickly generate new hypothesis. Furthermore, it provides a framework that can be used to share and reuse explorative analysis tools within the community

    Presenting and Sharing Clinical Data using the eTRIKS Standards Master Tree for tranSMART

    No full text
    Motivation Standardization and semantic alignment have been considered one of the major challenges for data integration in clinical research. The inclusion of the CDISC SDTM clinical data standard into the tranSMART i2b2 via a guiding master ontology tree positively impacts and supports the efficacy of data sharing, visualization and exploration across datasets. Results We present here a schema for the organization of SDTM variables into the tranSMART i2b2 tree along with a script and test dataset to exemplify the mapping strategy. The eTRIKS master tree concept is demonstrated by making use of fictitious data generated for four patients, including 16 SDTM clinical domains. We describe how the usage of correct visit names and data labels can help to integrate multiple readouts per patient and avoid ETL crashes when running a tranSMART loading routine. Availability The eTRIKS Master Tree package and test datasets are publicly available at https://doi.org/10.5281/zenodo.1009098 and a functional demo installation at https://public.etriks.org/transmart/datasetExplorer/ under eTRIKS - Master Tree branch, where the discussed examples can be visualized

    Data and knowledge management in translational research: implementation of the eTRIKS platform for the IMI OncoTrack consortium

    No full text
    For large international research consortia, such as those funded by the European Union’s Horizon 2020 programme or the Innovative Medicines Initiative, good data coordination practices and tools are essential for the successful collection, organization and analysis of the resulting data. Research consortia are attempting ever more ambitious science to better understand disease, by leveraging technologies such as whole genome sequencing, proteomics, patient-derived biological models and computer-based systems biology simulations
    corecore