176 research outputs found

    Computed tomographic atlas for the new international lymph node map for lung cancer: A radiation oncologist perspective

    Get PDF
    International audiencePurpose : To develop a reproducible definition for each mediastinal lymph node station based on the new TNM classification for lung cancer. Methods and Materials : This paper proposes an atlas using the new international lymph node map used in the seventh edition of the TNM classification for lung cancer. Four radiation oncologists and 1 diagnostic radiologist were involved in the project to put forward a reproducible radiologic description for the lung lymph node stations.Results : The International Association for the Study of Lung Cancer lymph node definitions for stations 1 to 11 have been described and illustrated on axial computed tomographic scan images using a certified radiotherapy planning system. Conclusions : This atlas will assist both diagnostic radiologists and radiation oncologists in accurately defining the lymph node stations on computed tomographic scan in patients diagnosed with lung cancer

    Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study

    Get PDF
    International audiencePurpose : To determine the usefulness of abdominal compression in lung stereotactic body radiation therapy (SBRT) depending on lobe tumor location.Materials and methods : Twenty-seven non-small cell lung cancer patients were immobilized in the Stereotactic Body Frame™ (Elekta). Eighteen tumors were located in an upper lobe, one in the middle lobe and nine in a lower lobe (one patient had two lesions). All patients underwent two four-dimensional computed tomography (4DCT) scans, with and without abdominal compression. Three-dimensional tumor motion amplitude was determined using manual landmark annotation. We also determined the internal target volume (ITV) and the influence of abdominal compression on lung dose-volume histograms. Results : The mean reduction of tumor motion amplitude was 3.5 mm (p = 0.009) for lower lobe tumors and 0.8 mm (p = 0.026) for upper/middle lobe locations. Compression increased tumor motion in 5 cases. Mean ITV reduction was 3.6 cm3 (p = 0.039) for lower lobe and 0.2 cm3 (p = 0.048) for upper/middle lobe lesions. Dosimetric gain of the compression for lung sparing was not clinically relevant. Conclusions : The most significant impact of abdominal compression was obtained in patients with lower lobe tumors. However, minor or negative effects of compression were reported for other patients and lung sparing was not substantially improved. At our institute, patients with upper or middle lobe lesions are now systematically treated without compression and the usefulness of compression for lower lobe tumors is evaluated on an individual basis

    2012 Activity Report of the Regional Research Programme on Hadrontherapy for the ETOILE Center

    Get PDF
    2012 is the penultimate year of financial support by the CPER 2007-2013 for ETOILE's research program, sustained by the PRRH at the University Claude Bernard. As with each edition we make the annual review of the research in this group, so active for over 12 years now. Over the difficulties in the decision-making process for the implementation of the ETOILE Center, towards which all our efforts are focussed, some "themes" (work packages) were strengthened, others have progressed, or have been dropped. This is the case of the eighth theme (technological developments), centered around the technology for rotative beam distribution heads (gantries) and, after being synchronized with the developments of ULICE's WP6, remained so by ceasing its activities, coinciding also with the retirement of its historic leader at IPNL, Marcel Bajard. Topic number 5 ("In silico simulations") has suffered the departure of its leader, Benjamin Ribba, although the work has still been provided by Branka Bernard, a former postdoctoral fellow in Lyon Sud, and now back home in Croatia, still in contract with UCBL for the ULICE project. Aside from these two issues (and the fact that the theme "Medico-economical simulations" is now directly linked to the first one ("Medical Project"), the rest of the teams are growing, as evidenced by the publication statistics at the beginning of this report. This is obviously due to the financial support of our always faithful regional institutions, but also to the synergy that the previous years, the European projects, the arrival of the PRIMES LabEx, and the national France Hadron infrastructure have managed to impulse. The Rhone-Alpes hadron team, which naturally includes the researchers of LPC at Clermont, should also see its influence result in a strong presence in France Hadron's regional node, which is being organized. The future of this regional research is not yet fully guaranteed, especially in the still uncertain context of ETOILE, but the tracks are beginning to emerge to allow past and present efforts translate into a long future that we all want to see established. Each of the researchers in PRRH is aware that 2013 will be (and already is) the year of great challenge : for ETOILE, for the PRRH, for hadron therapy in France, for French hadrontherapy in Europe (after the opening and beginning of treatments in the German [HIT Heidelberg, Marburg], Italian [CNAO, Pavia] and Austrian [MedAustron, Wien Neuerstadt]) centers. Let us meet again in early 2014 for a comprehensive review of the past and a perspective for the future ..

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    Deformable Registration for Image-Guided Radiation Therapy

    No full text
    http://www.creatis.insa-lyon.fr/~dsarrut/mybib/2006/sarrut-zmedphys2006-short-version.pdf articleInternational audienc

    Region-oriented CT image representation for reducing computing time of Monte Carlo simulations

    No full text
    International audiencePURPOSE: We propose a new method for efficient particle transportation in voxelized geometry for Monte Carlo simulations. We describe its use for calculating dose distribution in CT images for radiation therapy. MATERIAL AND METHODS: The proposed approach, based on an implicit volume representation named segmented volume, coupled with an adapted segmentation procedure and a distance map, allows us to minimize the number of boundary crossings, which slows down simulation. The method was implemented with the GEANT4 toolkit and compared to four other methods: One box per voxel, parameterized volumes, octree-based volumes, and nested parameterized volumes. For each representation, we compared dose distribution, time, and memory consumption. RESULTS: The proposed method allows us to decrease computational time by up to a factor of 15, while keeping memory consumption low, and without any modification of the transportation engine. Speeding up is related to the geometry complexity and the number of different materials used. We obtained an optimal number of steps with removal of all unnecessary steps between adjacent voxels sharing a similar material. However, the cost of each step is increased. When the number of steps cannot be decreased enough, due for example, to the large number of material boundaries, such a method is not considered suitable. CONCLUSION: This feasibility study shows that optimizing the representation of an image in memory potentially increases computing efficiency. We used the GEANT4 toolkit, but we could potentially use other Monte Carlo simulation codes. The method introduces a tradeoff between speed and geometry accuracy, allowing computational time gain. However, simulations with GEANT4 remain slow and further work is needed to speed up the procedure while preserving the desired accuracy
    corecore