18 research outputs found

    Monitoring ecological dynamics on complex hydrothermal structures: A novel photogrammetry approach reveals fine‐scale variability of vent assemblages

    Get PDF
    We set out to characterize the fine-scale processes acting on interannual dynamics of deep-sea vent fauna by using a novel approach involving a 5-yr time series of 3D photogrammetry models acquired at the Eiffel Tower sulfide edifice (Lucky Strike vent field, Mid-Atlantic Ridge). Consistently, with the overall stability of the vent edifice, total mussel cover did not undergo drastic changes, suggesting that they have been at a climax stage for at least 25 yr based on previous data. Successional patterns showed consistency over time, illustrating the dynamic equilibrium of the ecological system. In contrast, microbial mats significantly declined, possibly due to magmatic events. The remaining environmental variability consisted of decimeter-scale displacement of vent outflows, resulting from their opening or closure or from the progressive accretion of sulfide material. As a result, vent mussels showed submeter variability in the immediate vicinity of vent exits, possibly by repositioning in response to that fine-scale regime of change. As former studies were not able to quantify processes at submeter scales in complex settings, this pioneering work demonstrates the potential of 3D photogrammetry models for conducting long-term monitoring in the deep sea. We observed that the ability of mussels to displace may enable them to cope with changing local conditions in a stable system. However, the long-term stability of mussel assemblages questions their capacity to withstand large-scale disturbances and may imply a low resilience of these “climax” communities. This suggests that they may be particularly vulnerable to the negative effects of mining activities in hydrothermal ecosystems

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Block copolymer selectivity: A new dry etch approach for cylindrical applications

    No full text
    International audienceA critical challenge for directed self-assembly of block copolymers is the selectivity between the two polymer phases. Polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) is one of the most studied block-copolymers to reach sub-20 nm patterns. A very high PMMA/PS selectivity (>10:1) is required to conserve a sufficient PS pattern thickness allowing pattern transfer to sublayers. In this paper, the authors propose to develop a chemistry allowing a full PMMA removal without PS consumption. It is based on CO and CO-H 2 cycles allowing to get a very high etch control. The proposed etch mechanisms have been understood thanks to x-ray photoelectron spectroscopy analyses performed on blanket wafers. Finally, this new etch process has been validated on the cylindrical PS-b-PMMA patterned structure. Published by the AVS
    corecore