92 research outputs found

    The effect of modafinil on the rat dopamine transporter and dopamine receptors D1–D3 paralleling cognitive enhancement in the radial arm maze

    Get PDF
    A series of drugs have been reported to increase memory performance modulating the dopaminergic system and herein modafinil was tested for its working memory (WM) enhancing properties. Reuptake inhibition of dopamine, serotonin (SERT) and norepinephrine (NET) by modafinil was tested. Sixty male Sprague–Dawley rats were divided into six groups (modafinil-treated 1–5–10 mg/kg body weight, trained and untrained and vehicle treated trained and untrained rats; daily injected intraperitoneally for a period of 10 days) and tested in a radial arm maze (RAM), a paradigm for testing spatial WM. Hippocampi were taken 6 h following the last day of training and complexes containing the unphosphorylated or phosphorylated dopamine transporter (DAT-CC and pDAT-CC) and complexes containing the D1–3 dopamine receptor subunits (D1–D3-CC) were determined. Modafinil was binding to the DAT but insignificantly to SERT or NET and dopamine reuptake was blocked specifically (IC50 = 11.11 μM; SERT 1547 μM; NET 182 μM). From day 8 (day 9 for 1 mg/kg body weight) modafinil was decreasing WM errors (WMEs) in the RAM significantly and remarkably at all doses tested as compared to the vehicle controls. WMEs were linked to the D2R-CC and the pDAT-CC. pDAT and D1–D3-CC levels were modulated significantly and modafinil was shown to enhance spatial WM in the rat in a well-documented paradigm at all the three doses and dopamine reuptake inhibition with subsequent modulation of D1–3-CC is proposed as a possible mechanism of action. © 2015 Karabacak, Sase, Aher, Sase, Saroja, Cicvaric, Höger, Berger, Bakulev, Sitte, Leban, Monje and Lubec

    The association of genetic variants of type 2 diabetes with kidney function

    Get PDF
    Type 2 diabetes is highly prevalent and is the major cause of progressive chronic kidney disease in American Indians. Genome wide association studies identified several loci associated with diabetes but their impact on susceptibility to diabetic complications is unknown. To measure this we studied the association of 18 type 2 diabetes genome wide association single nucleotide polymorphisms (SNPs) with the estimated glomerular filtration rate (eGFR) (MDRD equation) and urine albumin to creatinine ratio in 6,958 individuals in the Strong Heart Study family and cohort participants. Center specific residuals of eGFR and the log urine albumin to creatinine ratio, obtained from linear regression models adjusted for age, sex and body mass index, were regressed onto SNP dosage using variance component in family data and linear regression models in unrelated individuals. Estimates were then combined across centers. Four diabetic loci were associated with eGFR and one locus with the urine albumin to creatinine ratio. A SNP in the WFS1 gene (rs10010131) was associated with higher eGFR in younger individuals and with increased albuminuria. The SNPs of the FTO, KCNJ11 and TCF7L2 genes were associated with lower eGFR, not albuminuria, and were not significant in prospective analyses. Our findings suggest a shared genetic risk for type 2 diabetes, its kidney complications, and a potential role for WFS1 in early onset diabetic nephropathy in American Indian populations

    Social- and Behavioral-Specific Genetic Effects on Blood Pressure Traits: The Strong Heart Family Study

    Get PDF
    Population studies have demonstrated an important role of social, behavioral, and environmental factors in blood pressure levels. Accounting for the genetic interaction of these factors may help to identify common blood pressure susceptibility alleles

    Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex

    Get PDF
    Viral genetic tools to target specific brain cell types in humans and non-genetic model organisms will transform basic neuroscience and targeted gene therapy. Here we used comparative epigenetics to identify thousands of human neuronal subclass-specific putative enhancers to regulate viral tools, and 34% of these were conserved in mouse. We established an AAV platform to evaluate cellular specificity of functional enhancers by multiplexed fluorescent in situ hybridization (FISH) and single cell RNA sequencing. Initial testing in mouse neocortex yields a functional enhancer discovery success rate of over 30%. We identify enhancers with specificity for excitatory and inhibitory classes and subclasses including PVALB, LAMP5, and VIP/LAMP5 cells, some of which maintain specificity in vivo or ex vivo in monkey and human neocortex. Finally, functional enhancers can be proximal or distal to cellular marker genes, conserved or divergent across species, and could yield brain-wide specificity greater than the most selective marker genes

    BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis

    Get PDF
    Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes

    Comparative cellular analysis of motor cortex in human, marmoset and mouse

    Get PDF
    The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations
    corecore