200 research outputs found

    Optimal detection of homogeneous segment of observations in stochastic sequence

    Full text link
    A Markov process is registered. At random moment θ\theta the distribution of observed sequence changes. Using probability maximizing approach the optimal stopping rule for detecting the change is identified. Some explicit solution is obtained.Comment: 13 page

    Leveraging Family History in Genetic Association Analyses of Binary Traits

    Get PDF
    BACKGROUND: Considering relatives\u27 health history in logistic regression for case-control genome-wide association studies (CC-GWAS) may provide new information that increases accuracy and power to detect disease associated genetic variants. We conducted simulations and analyzed type 2 diabetes (T2D) data from the Framingham Heart Study (FHS) to compare two methods, liability threshold model conditional on both case-control status and family history (LT-FH) and Fam-meta, which incorporate family history into CC-GWAS. RESULTS: In our simulation scenario of trait with modest T2D heritability (h CONCLUSIONS: Overall, LT-FH and Fam-meta had higher power than CC-GWAS in simulations, especially using phenotypes that were more prevalent in older age groups, and both methods detected known genetic variants with lower P-values in real data application, highlighting the benefits of including family history in genetic association studies

    Genetic Effect on Body Mass Index and Cardiovascular Disease Across Generations

    Get PDF
    BACKGROUND: Whether genetics contribute to the rising prevalence of obesity or its cardiovascular consequences in today\u27s obesogenic environment remains unclear. We sought to determine whether the effects of a higher aggregate genetic burden of obesity risk on body mass index (BMI) or cardiovascular disease (CVD) differed by birth year. METHODS: We split the FHS (Framingham Heart Study) into 4 equally sized birth cohorts (birth year before 1932, 1932 to 1946, 1947 to 1959, and after 1960). We modeled a genetic predisposition to obesity using an additive genetic risk score (GRS) of 941 BMI-associated variants and tested for GRS-birth year interaction on log-BMI (outcome) when participants were around 50 years old (N=7693). We repeated the analysis using a GRS of 109 BMI-associated variants that increased CVD risk factors (type 2 diabetes, blood pressure, total cholesterol, and high-density lipoprotein) in addition to BMI. We then evaluated whether the effects of the BMI GRSs on CVD risk differed by birth cohort when participants were around 60 years old (N=5493). RESULTS: Compared with participants born before 1932 (mean age, 50.8 yrs [2.4]), those born after 1960 (mean age, 43.3 years [4.5]) had higher BMI (median, 25.4 [23.3-28.0] kg/m CONCLUSIONS: The significant GRS-birth year interactions indicate that common genetic variants have larger effects on middle-age BMI and CVD risk in people born more recently. These findings suggest that the increasingly obesogenic environment may amplify the impact of genetics on the risk of obesity and possibly its cardiovascular consequences

    Multi-Tissue Epigenetic analysis Identifies Distinct associations Underlying insulin Resistance and alzheimer\u27s Disease at Cpt1A Locus

    Get PDF
    BACKGROUND: Insulin resistance (IR) is a major risk factor for Alzheimer\u27s disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS: We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P \u3c 1.1 × 10 RESULTS: We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10 CONCLUSIONS: Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus

    Electrophysiological evaluation of phrenic nerve injury during cardiac surgery – a prospective, controlled, clinical study

    Get PDF
    BACKGROUND: According to some reports, left hemidiaphragmatic paralysis due to phrenic nerve injury may occur following cardiac surgery. The purpose of this study was to document the effects on phrenic nerve injury of whole body hypothermia, use of ice-slush around the heart and mammary artery harvesting. METHODS: Electrophysiology of phrenic nerves was studied bilaterally in 78 subjects before and three weeks after cardiac or peripheral vascular surgery. In 49 patients, coronary artery bypass grafting (CABG) and heart valve replacement with moderate hypothermic (mean 28°C) cardiopulmonary bypass (CPB) were performed. In the other 29, CABG with beating heart was performed, or, in several cases, peripheral vascular surgery with normothermia. RESULTS: In all patients, measurements of bilateral phrenic nerve function were within normal limits before surgery. Three weeks after surgery, left phrenic nerve function was absent in five patients in the CPB and hypothermia group (3 in CABG and 2 in valve replacement). No phrenic nerve dysfunction was observed after surgery in the CABG with beating heart (no CPB) or the peripheral vascular groups. Except in the five patients with left phrenic nerve paralysis, mean phrenic nerve conduction latency time (ms) and amplitude (mV) did not differ statistically before and after surgery in either group (p > 0.05). CONCLUSIONS: Our results indicate that CPB with hypothermia and local ice-slush application around the heart play a role in phrenic nerve injury following cardiac surgery. Furthermore, phrenic nerve injury during cardiac surgery occurred in 10.2 % of our patients (CABG with CPB plus valve surgery)

    Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women

    Get PDF
    © 2021, The Author(s). Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256, 523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1p = 4 × 10−17), arthritis (GDF5p = 4 × 10−13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing

    Clonal Hematopoiesis is Associated With Protection From Alzheimer\u27s Disease

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer\u27s disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 1

    BMJ Open

    Get PDF
    INTRODUCTION: Worldwide, 2 million patients aged 18-50 years suffer a stroke each year, and this number is increasing. Knowledge about global distribution of risk factors and aetiologies, and information about prognosis and optimal secondary prevention in young stroke patients are limited. This limits evidence-based treatment and hampers the provision of appropriate information regarding the causes of stroke, risk factors and prognosis of young stroke patients. METHODS AND ANALYSIS: The Global Outcome Assessment Life-long after stroke in young adults (GOAL) initiative aims to perform a global individual patient data meta-analysis with existing data from young stroke cohorts worldwide. All patients aged 18-50 years with ischaemic stroke or intracerebral haemorrhage will be included. Outcomes will be the distribution of stroke aetiology and (vascular) risk factors, functional outcome after stroke, risk of recurrent vascular events and death and finally the use of secondary prevention. Subgroup analyses will be made based on age, gender, aetiology, ethnicity and climate of residence. ETHICS AND DISSEMINATION: Ethical approval for the GOAL study has already been obtained from the Medical Review Ethics Committee region Arnhem-Nijmegen. Additionally and when necessary, approval will also be obtained from national or local institutional review boards in the participating centres. When needed, a standardised data transfer agreement will be provided for participating centres. We plan dissemination of our results in peer-reviewed international scientific journals and through conference presentations. We expect that the results of this unique study will lead to better understanding of worldwide differences in risk factors, causes and outcome of young stroke patients

    Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation

    Get PDF
    Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10(–15)) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10(–8)) and mtDNA replication (p = 1.2 × 10(–7)). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10(–4)). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00439-021-02394-w
    • …
    corecore