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Abstract

Background: Whether genetics contribute to the rising prevalence of obesity or its 

cardiovascular consequences in today’s “obesogenic” environment remains unclear. We sought 

to determine whether the effects of a higher aggregate genetic burden of obesity risk on body mass 

index (BMI) or cardiovascular disease (CVD) differed by birth year.

Methods: We split the Framingham Heart Study (FHS) into four equally sized birth cohorts 

(birth year before 1932, 1932–1946, 1947–1959, and after 1960). We modeled a genetic 
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predisposition to obesity using an additive genetic risk score (GRS) of 941 BMI-associated 

variants and tested for GRS-birth year interaction on log-BMI (outcome) when participants were 

around 50 years old (N=7,693). We repeated the analysis using a GRS of 109 BMI-associated 

variants that increased CVD risk factors (type 2 diabetes, blood pressure, total cholesterol, and 

high-density lipoprotein) in addition to BMI. We then evaluated whether the effects of the 

BMI GRSs on CVD risk differed by birth cohort when participants were around 60 years old 

(N=5,493).

Results: Compared to participants born before 1932 (mean age 50.8 yrs (2.4)), those born 

after 1960 (mean age 43.3 yrs (4.5)) had higher BMI (median 25.4 [23.3–28.0] kg/m2 vs. 26.9 

[interquartile range 23.7–30.6] kg/m2). The effect of the 941-variant BMI GRS on BMI and CVD 

risk was stronger in people who were born in later years (GRS-birth year interaction: P=0.0007 

and P=0.04 respectively).

Conclusions: The significant GRS-birth year interactions indicate that common genetic variants 

have larger effects on middle-age BMI and CVD risk in people born more recently. These findings 

suggest that the increasingly “obesogenic” environment may amplify the impact of genetics on the 

risk of obesity and possibly its cardiovascular consequences.

Introduction

We are amid an obesity epidemic in the United States.1 Changes in social, behavioral and 

lifestyle factors, e.g., urbanization, efficient transportation networks, increase in sedentary 

work, advent of modern technology, reliance on electronic transactions and internet-based 

social connections are responsible for the explosion in obesity since the 1990s, coupled 

with the growing consumption of calorie-dense, conveniently prepared, and readily available 

food and beverages.2–4 These environmental factors are considered “obesogenic” when they 

promote positive energy balance, weight gain and obesity.

Body mass index (BMI) is partly genetically determined.5 While genetic factors are 

determined at birth and potentially exert their effects throughout life, environmental 

exposures may amplify or nullify these genetic effects.

One of the first examinations for statistical interaction between obesity variants and birth 

year on adiposity traits was the longitudinal Fels study (participants born between 1901 

and 1986). The study identified a significant interaction between a BMI genetic risk score 

(GRS), composed of 32 SNPs, and birth year on BMI, suggesting that the effect of genetic 

variants on obesity risk was larger in recent years.6 Previous works conducted in the Health 

and Retirement Study have shown that a genetic predisposition to higher BMI has a larger 

effect among adults born in the middle of the 20th century compared to those born earlier 

in the century.7, 8 A study conducted in the UK Biobank showed that the genetic effects 

on BMI may be stronger in younger people (1.4-fold higher for BMI in the youngest 

quartile compared to the oldest). The differences in genetic effect sizes by age group 

could not be explained by differences in environmental variance when the genetic variance 

was similar across strata, or by gene-by-environment (sample characteristics) interactions.9 

Nevertheless, given the cross-sectional design of UK Biobank, the study did not test whether 

genetic effect size estimates varied by birth cohorts. Furthermore, not all genetic effects 
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on BMI are metabolically deleterious.10–13 Whether the larger genetic effect on BMI 

observed in more recent birth cohorts extends to cardiovascular disease (CVD) or other 

cardiometabolic risk factors remains unclear.14

Here, we proposed to examine genetic effect on BMI across three generations of the 

Framingham Heart Study (FHS). Each generation was influenced by different historical 

events throughout the last century against a backdrop of a modernizing society. Most 

participants in the original generation were born around World War I and lived through 

the Great Depression (1929–1933). The offspring generation, made up of the children of 

the original generation and their spouses, were born around World War II and experienced 

adulthood during the long post-war economic expansion in the 1970s. Most participants in 

the third generation were born during this economic expansion and were most influenced by 

the rapidly transforming technological age at the turn of the millennium.

We hypothesized that a higher aggregate genetic burden of obesity risk has a larger impact 

on BMI in middle-age in the recent years versus earlier years, reflecting the effect of a 

temporally changing, increasingly obesogenic environment. We further hypothesized that the 

consequence of having a higher genetic predisposition to obesity on the risk of CVD may 

also differ by generation. As BMI genetic variants may raise a person’s CVD risk through 

other CVD risk factors (e.g., type 2 diabetes, hypertension, dyslipidemia) in addition to 

BMI, we postulated that, if a higher genetic predisposition to obesity was associated with 

higher CVD risk, this association might be primarily driven by the subset of BMI genetic 

variants with pleiotropic effects on other CVD risk factors.

Thus, we sought to determine whether a genetic risk score (GRS) composed of BMI genetic 

variants previously reported by genome-wide association studies (GWAS) had different 

effect size estimates on middle-age BMI in people born in different calendar periods (i.e., 

birth cohorts) spanning seven decades in FHS. We repeated the analyses with two additional 

GRS, composed of a subset of BMI genetic variants, based on publicly available GWAS 

results for other CVD risk factors. We then tested whether the BMI GRS effect size 

estimates on CVD risk before 60 years of age differed by birth cohorts.

Methods

The code used to perform association and interaction analyses is publicly available 

at http://github.com/chloesar77/BMIGRS_BirthCohort_Analysis/. All Framingham Heart 

Study participants provided written informed consent. This study was approved by the 

Institutional Review Board of the Boston University Medical Campus. The full methods are 

available as Supplemental data.

Results

Participant characteristics

Participant characteristics for the BMI and CVD analyses by birth cohorts or FHS cohorts 

are presented in Tables 1, 2 and Supplemental Tables I and II respectively. Participants 

were predominantly women (53–56%). By study design, participants were aged around 
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50 years in the BMI analysis (N=7,693). The mean age at examinations close to age 50 

ranged from 43.3 years in participants born after 1960 to 50.9 years in participants born 

between 1932 and 1946. The BMI median and variance increased over time; participants 

in later birth cohorts had higher BMI compared to those in earlier birth cohorts (median 

BMI of 25.4 [23.3–28.0] kg/m2 in participants born before 1932 vs. 26.9 [23.7–30.6] kg/m2 

in participants born after 1960). In the CVD analysis, participants were aged around 60 

years (N=5,493). The mean age at examinations close to age 60 ranged from 59.4 years in 

participants born after 1946 to 60.3 years in participants born before 1947. Mean SBP, mean 

LDL, proportion of smokers, and proportion of CVD cases were lower in participants in 

later birth cohorts compared to those in the earlier birth cohorts despite higher median BMI 

and higher BMI variance. A larger proportion of participants reported medication use for 

hyperlipidemia in later birth cohorts compared to earlier birth cohorts.

BMI analysis results

We did not observe differences in mean BMI GRS by birth cohort. We observed strong 

significant associations of the BMI GRS on log(BMI) in each birth cohort (P<10−17; Table 

3 and Figure 1). The most significant association and largest effect size estimate was 

observed in the more recent birth cohorts (before 1932: 0.82 [0.63–1.01] kg/m2 per SD 

of GRS; after 1960: 1.36 [1.13–1.58] kg/m2 per SD of GRS based on a median BMI 

of 27 kg/m2; Figure 1). The BMI GRS PVE varied from 4.2% to 6.6% We detected 

a positive significant interaction between the BMI GRS and birth year on log(BMI) 

(PGRSxbirthyear=0.0007) and when comparing participants born before 1932 to participants 

born after 1960 (PGRSxbc41=0.0002). The impact of the three FTO SNPs on log(BMI) were 

comparable across birth cohorts. While the association of the BMI GRS on log(BMI) in each 

of the birth cohorts was slightly lower when the FTO SNPs were excluded from the BMI 

GRS, associations and interactions with birth year and birth cohort remained significant 

(PGRSxbirthyear=0.001, PGRSxbc41=5.2×10−5; Supplemental Table III).

When restricting the BMI GRS to CVD risk-raising variants (CVD risk-raising BMI-raising 

GRS), we observed significant associations of the GRS on log(BMI) in each birth cohort 

(Table 3 and Figure 1). The most significant association and largest effect size was observed 

in the more recent birth cohort (participants born after 1960: 0.77 [0.54–0.99] kg/m2 per 

SD of GRS). The effect size estimate of the GRS was smaller in the earlier birth cohorts 

compared to the later birth cohorts (participants born before 1932: 0.53 [0.34–0.73] kg/m2 

per SD of GRS, Table 3 and Figure 1) although confidence intervals with other birth cohorts 

overlapped. The CVD risk-raising BMI-raising GRS PVE varied between 1.4% and 2.1%. 

We observed stronger effect size estimates of the CVD risk-lowering/neutral BMI-raising 

GRS on log(BMI) for all birth cohorts, likely due to the high number of variants (N>800) 

included in this GRS (Table 3 and Figure 1). The CVD-risk-lowering/neutral BMI-raising 

GRS PVE varied from 2.6% to 4.1%. Finally, we observed similar results when using FHS 

cohorts to define generations (Supplemental Figure I and Table IV).

CVD analysis results

We then evaluated whether the larger genetic effect on BMI observed in the more recent 

years extended to CVD risk. We observed a modest association of the BMI GRS on CVD 
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in participants born after 1946 (OR=1.30 [1.08–1.57], P=0.007) and interaction between the 

BMI GRS and birth cohort (PGRSxbc12=0.04). We did not observe any other associations 

between the BMI GRS, the CVD risk-raising BMI-raising GRS, or the CVD risk-lowering/

neutral BMI-raising GRS and CVD risk, in any of the two birth cohorts (Table 4).

Discussion

The increasingly obesogenic environment is suspected to be the primary driver of the 

recent obesity epidemic. Whether a genetic predisposition to obesity plays a role in the 

rising prevalence of obesity remains unclear. We sought to evaluate whether the association 

of common genetic variants with obesity risk in middle-aged adults differed across birth 

cohorts spanning seven decades in the FHS. We detected a significant GRS by birth year 

interaction on BMI, suggesting a larger effect of a higher genetic predisposition to obesity 

on BMI in later birth cohorts, consistent with previous literature6–8, 15. Two previous studies 

in FHS had sought to examine gene by birth cohort interactions on BMI.15, 16 One of the 

studies using the Offspring cohort (N=3,720) detected an interaction between a FTO SNP 

(rs9939609, linkage disequilibrium: r2≥0.9 with rs9922708 in our study) and birth cohort 

on BMI.16 Another study on approximately 5,000 unrelated FHS participants described 

a gene by historical period interaction whereby genetic effects on BMI were larger after 

1985 compared to before 1985. The authors further concluded that this genetic influence 

weakened over the life course.15

Effect size estimates of the full 941-variant BMI GRS were larger and explained more of 

the variance in BMI than the smaller GRS composed of variants that increased CVD risk in 

addition to BMI. While only a small proportion of the BMI genetic variants increased CVD 

risk in addition to BMI, they explained more of the variance in BMI compared to those that 

did not increase CVD risk, highlighting the pleiotropy of genetic variants with larger effect 

size estimates on BMI. We recognize that FHS was one of the studies included in the Yengo 

et al. BMI GWAS; however, as FHS represented only a small proportion (~1.2%) of the total 

sample of this GWAS, any overestimation of effects in our study due to overfitting is likely 

minimal.

Because the cardiovascular consequences of obesity are well established, we sought to 

extend the findings reported by Walter et al.7 and Guo et al.15 by determining the 

contribution of obesity genetics to CVD risk factors across generations using a BMI GRS. 

We detected a small interaction between the BMI GRS and birth cohort on CVD before 

approximately 60 years of age but did not observe any significant generational differences 

in the effects on CVD risk when restricting to variants that increased both BMI and CVD 

risk factors. Notably, only seven genetic variants among the 941 included in the full BMI 

GRS showed association (P<5×10−5) with CAD in Nelson et al. GWAS,17 and three of them 

were not included in either one of the smaller GRSs because of inconsistent direction of 

associations across the five CVD risk factors. Our results imply that some people, despite 

being genetically determined to be heavier than others, may not necessarily be excessively 

predisposed to developing CVD, even in today’s obesogenic environment. We also note 

that CVD risk factors in FHS have decreased over the birth cohorts suggesting improved 

cardiovascular health at the population level over the last century despite rising obesity 
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rates.14 It is possible that better control of other CVD risk factors (e.g., hyperlipidemia, 

type 2 diabetes, and hypertension) may mitigate some of the cardiovascular consequences 

of obesity in more recent generations. Moreover, not all genetic effects on BMI are 

metabolically deleterious; some genetic variants that increase BMI may have no effect, or 

even have a protective effect on CVD risk factors.

Strengths of the study include the use of three generations of both related and unrelated 

participants from the FHS with well-characterized phenotypes uniformly ascertained in 

exams spanning 70 years enabling comparisons across multiple birth cohorts. Careful 

statistical analyses were also performed when analyzing BMI as the outcome because BMI 

and its variance vary over time and generations. We acknowledge that the predominantly 

European origin of our sample limits the generalizability of our results to other ancestral 

groups. We recognize that it is challenging to separate age, cohort, and period effects, and 

some of the BMI genetic variants included in the GRS may have effect size estimates that 

vary with age.9, 18, 19 Nevertheless, our study design defined birth cohorts by birth year 

and not age, and restricted to examinations when all participants were around middle-age. 

Despite this, the mean age across birth cohorts in the BMI analysis still differed by up to 8 

years; thus, we additionally adjusted for age in all our models. In sensitivity analyses, we 

adjusted for age squared and observed similar results. For the CVD analysis, we restricted 

to a narrower range to ensure that outcomes were ascertained at a similar time in a person’s 

life regardless of their birth year. The age restriction, however, limited the number of CVD 

cases, particularly in more recent generations. Finally, the limited availability of both genetic 

and phenotypic data in the first generation impacted the sample size and thus the power of 

the analyses. Association results in this group are less conclusive and are to be interpreted 

cautiously. We recognize that some participants may have died before the opportunity for 

DNA collection; thus, our results may be less generalizable to early CVD death.

Conclusion

In this study, we showed an interaction between a higher aggregate genetic burden of obesity 

risk and birth year on BMI in middle-age, with larger genetic effect size estimates in people 

born more recently compared to almost a century ago, establishing that the primary driver 

of the modern obesity epidemic is the increasingly obesogenic environment in which we 

live. We also showed that this genetic effect on BMI may extend to the cardiovascular 

consequences of obesity; although, the genetically determined, metabolically deleterious 

effects of obesity could have been attenuated by improved control of other CVD risk 

factors in recent generations. Our study highlights the importance of targeting the entire 

complement of risk factors in CVD prevention in addition to maintaining a normal body 

weight.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Effect of one unit increase of the BMI GRS, CVD risk-raising BMI-raising GRS or CVD 

risk-lowering/neutral BMI-raising GRS on BMI based on a median BMI of 27, stratified by 

birth cohort defined by estimated birth year
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Table 1:

Descriptive table for participants included in the BMI analysis by estimated birth year. Examination close to 

age 50yrs for each participant, ages ranges [35–65].

Birth Cohorts

<1932
(N=1,862)

1932–1946
(N=1,883)

1947–1959
(N=1,818)

≥1960
(N=2,130)

Age, mean (SD) 50.8 (2.4) 50.9 (2.8) 50.5 (2.4) 43.3 (4.5)

Men, N (%) 814 (44) 887 (47) 862 (47) 981 (46)

BMI, median
[25–75pc]

25.4
[23.3–28.0]

26.6
[23.8–29.8]

27.0
[24.0–30.8]

26.9
[23.7–30.6]

LDL, mean (SD) 146.0 (36.1) 130.9 (35.4) 116.8 (32.6) 106.2 (30.3)

HDL, mean (SD) 52.6 (17.3) 51.1 (16.0) 56.5 (18.0) 58.1 (16.9)

TG, mean (SD) 113.2 (67.6) 130.3 (82.1) 121.7 (77.9) 111.4 (69.1)

SBP, mean (SD) 127.8 (17.2) 124.0 (16.5) 120.6 (15.4) 114.4 (13.3)

DBP, mean (SD) 81.4 (10.2) 78.4 (9.9) 76.9 (9.4) 74.6 (9.5)

FG, mean (SD) NA* 97.9 (24.4) 99.2 (21.3) 95.0 (17.2)

T2D case, N (%) 39 (4.5) 130 (5.8) 110 (7.2) 83 (1.8)

T2D medication, N (%) 20 (1.0) 50 (2.6) 67 (3.7) 38 (1.8)

Hypertension medication, N (%) 407 (35.1) 805 (60.5) 507 (33.4) 200 (10.7)

Lipid medication, N (%) 17 (1.03) 85 (4.5) 250 (13.8) 216 (10.1)

Smoking status

Never, N (%) 669 (35.9) 615 (32.7) 814 (44.8) 1,261 (59.2)

Former, N (%) 475 (25.5) 810 (43.0) 710 (39.1) 608 (28.5)

Smokers, N (%) 644 (34.6) 476 (25.3) 305 (16.8) 261 (12.3)

BMI: body mass index; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; TG: triglycerides; SBP: Systolic blood pressure; DBP: 
Diastolic blood pressure; FG: Fasting glucose; T2D: type 2 diabetes

Hypertension and lipid medication were self-reported based on the questions: “Are you currently taking medication for high blood pressure 
or hypertension? or Since your last exam have you taken medication for hypertension/high blood pressure?” and “Are you currently taking 
medication for high blood cholesterol or high triglycerides? or Since your last exam have you taken medication for high blood cholesterol or high 
triglycerides?”

Diabetes was defined as fasting glucose (FG) ≥ 126 mg/dL after ≥ 8 hours, HbA1c ≥ 6.5%-units, 2-hour glucose by an oral glucose tolerance test ≥ 
11.1 mmol/L, non-fasting glucose ≥ 199.8 mg/dL, physician diagnosed diabetes, self-reported diabetes, or use of an antidiabetic medication.

*
FG not available in Gen 1 in FHS
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Table 2:

Descriptive table for participants included in the CVD analysis by estimated birth year. Examination close to 

age 60yrs for each participant, ages ranges [55–65].

Birth Cohorts

<1932–1946
(N=3,601)

1947–≥1960
(N=1,892)

Age, mean (SD) 60.3 (1.5) 59.4 (2.3)

Men, N (%) 1,630 (45) 889 (47)

BMI, median
[25–75pc]

26.9
[24.3–30.1]

27.7
[24.5–31.5]

LDL, mean (SD) 129.6 (36.2) 108.1 (31.8)

HDL, mean (SD) 52.3 (16.7) 61.0 (20.2)

TG, mean (SD) 135.0 (76.6) 114.5 (63.8)

SBP, mean (SD) 130.2 (17.8) 122.7 (14.9)

DBP, mean (SD) 77.6 (9.5) 75.9 (9.0)

FG, mean (SD) 103.6 (26.9) 102.8 (22.8)

T2D cases, N (%) 382 (10.6) 181 (9.6)

T2D medication, N (%) 166 (4.6) 145 (7.8)

Hypertension medication, N (%) 1,190 (48.5) 656 (37.0)

Lipid medication, N (%) 475 (14.7) 620 (32.8)

CVD cases, N (%) 384 (10.7) 121 (6.4)

Smoking status

Never, N (%) 1183 (32.9) 873 (46.1)

Former, N (%) 1633 (45.3) 822 (43.4)

Smokers, N (%) 644 (17.9) 163 (8.6)

BMI: body mass index; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; TG: triglycerides; SBP: Systolic blood pressure; DBP: 
Diastolic blood pressure; FG: Fasting glucose; T2D: Type 2 diabetes; CVD: Cardiovascular diseases

Hypertension and lipid medication were self-reported based on the questions: “Are you currently taking medication for high blood pressure 
or hypertension? or Since your last exam have you taken medication for hypertension/high blood pressure?” and “Are you currently taking 
medication for high blood cholesterol or high triglycerides? or Since your last exam have you taken medication for high blood cholesterol or high 
triglycerides?”

Diabetes was defined as fasting glucose (FG) ≥ 126 mg/dL after ≥ 8 hours, HbA1c ≥ 6.5%-units, 2-hour glucose by an oral glucose tolerance test ≥ 
11.1 mmol/L, non-fasting glucose ≥ 199.8 mg/dL, physician diagnosed diabetes, self-reported diabetes, or use of an antidiabetic medication.
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