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Abstract 

Background:  Considering relatives’ health history in logistic regression for case–control genome-wide association 
studies (CC-GWAS) may provide new information that increases accuracy and power to detect disease associated 
genetic variants. We conducted simulations and analyzed type 2 diabetes (T2D) data from the Framingham Heart 
Study (FHS) to compare two methods, liability threshold model conditional on both case–control status and family 
history (LT-FH) and Fam-meta, which incorporate family history into CC-GWAS.

Results:  In our simulation scenario of trait with modest T2D heritability (h2 = 0.28), variant minor allele frequency 
ranging from 1% to 50%, and 1% of phenotype variance explained by the genetic variants, Fam-meta had the highest 
overall power, while both methods incorporating family history were more powerful than CC-GWAS. All three meth‑
ods had controlled type I error rates, while LT-FH was the most conservative with a lower-than-expected error rate. 
In addition, we observed a substantial increase in power of the two familial history methods compared to CC-GWAS 
when the prevalence of the phenotype increased with age. Furthermore, we showed that, when only the pheno‑
types of more distant relatives were available, Fam-meta still remained more powerful than CC-GWAS, confirming 
that leveraging disease history of both close and distant relatives can increase power of association analyses. Using 
FHS data, we confirmed the well-known association of TCF7L2 region with T2D at the genome-wide threshold of 
P-value < 5 × 10–8, and both familial history methods increased the significance of the region compared to CC-GWAS. 
We identified two loci at 5q35 (ADAMTS2) and 5q23 (PRR16), not previously reported for T2D using CC-GWAS and Fam-
meta; both genes play a role in cardiovascular diseases. Additionally, CC-GWAS detected one more significant locus at 
13q31 (GPC6) reported associated with T2D-related traits.

Conclusions:  Overall, LT-FH and Fam-meta had higher power than CC-GWAS in simulations, especially using pheno‑
types that were more prevalent in older age groups, and both methods detected known genetic variants with lower 
P-values in real data application, highlighting the benefits of including family history in genetic association studies.
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Background
Traditional genome-wide association studies assessing 
the association with binary traits using a logistic regres-
sion (CC-GWAS) are based on each study individual’s 
genotypes and case–control status. Phenotypic status 

of relatives who are not genotyped is also expected to 
be associated with participants’ genotypes based on the 
rules of genetic inheritance. While readily available but 
often ignored, family history provides additional valu-
able information that may increase the accuracy and 
power of association tests. To leverage family history in 
genetic association studies, different approaches have 
been proposed. A popular technique focuses on imput-
ing missing genotypes for individuals based on their rela-
tives’ genotypes and a known pedigree structure [1–4]. 
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According to these imputation methods, incorporating 
predicted genotypes of relatives increases the power of 
genetic association studies. One specific study used the 
Framingham Heart Study (FHS) cohort to demonstrate 
that using identity-by-descent information in families to 
impute genotypes strengthened the association signals 
for known disease loci [2]. However, there are several 
major disadvantages to the imputation of non-genotyped 
individuals, as imputation can be very computationally 
expensive depending on the number of SNPs, and the 
accuracy of the estimated genotypes varies among differ-
ent types of studies.

In this paper, we examined two proposed approaches to 
directly integrate the phenotypes of ungenotyped relatives 
into association analysis, without any additional time-con-
suming imputations or further costly genotyping. The “lia-
bility threshold model conditional on both case–control 
status and family history” (LT-FH) method [5] replaces 
binary case–control status with posterior mean genetic 
liability scores based on each individual’s and first-degree 
relatives’ phenotypes. Another method [6] proposes a 
meta-analysis framework (referred to as Fam-meta in this 
paper) to combine test statistics from two independent 
regression analyses, one involving genotyped individuals, 
the other involving their relatives with phenotypic infor-
mation only. It has been shown empirically [5, 6] that each 
familial history approach substantially increases power 
to detect risk loci associated with diseases compared to 
CC-GWAS, though the two approaches have not yet been 
compared directly. In this study, we assessed and con-
trasted the performance of LT-FH and Fam-meta by first 
conducting simulations, and then association analysis of 
type 2 diabetes (T2D) in the FHS dataset.

Methods
Method overview
LT‑FH
Details regarding the LT-FH method can be found else-
where [5]. In LT-FH, the first step is to compute a pos-
terior mean genetic liability for each individual, based 
on the individual’s disease status as well as any available 
parent or sibling disease status. The genetic liabilities are 
assumed to follow a multivariate normal distribution:

Which includes the environmental ( ǫo,e ) and genetic 
( ǫo,g ) components of the liabilities of offspring, the liabili-
ties of parent ( ǫp1, ǫp2 ), and the liabilities of siblings ( ǫs ). 
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Given the disease status of an individual Z0 , his parents 
Zp1,Zp2 , and siblings Zs , The posterior mean genetic 
liabilities E[ǫo,g |Z0,Zp1,Zp2,Zs] for every possible config-
uration of case–control status and family history are esti-
mated with Monte Carlo integration. In the second step, 
an association test is conducted between the continuous 
liabilities and genotypes. The association statistics can be 
obtained using multiple models, such as linear regres-
sion, score test, or linear mixed effect models.

Fam‑meta
Fam-meta considers two independent association tests 
that have been previously described elsewhere [6]. The 
first analysis involves probands, or participants who have 
both genotypes and phenotype information available. A 
logistic regression can be fitted based on standard like-
lihood for case–control. The second analysis involves 
relatives who only have phenotypic information. This 
logistic regression is based on the likelihood of observ-
ing a relative’s case–control status, conditioning on both 
the proband’s case–control status as well as the probands’ 
phenotypes. The regression coefficients and variances 
from both regressions are then combined in a meta-anal-
ysis framework with optimal (inverse variance) weights:

where βP is the beta coefficient from the probands’ 
regression,  β̂R is the beta coefficient from the relatives’ 
regression, and φ is the kinship coefficient between the 
participant and the relative.

Simulations
Main models
We conducted simulations to directly compare the per-
formance of LT-FH and Fam-meta, while CC-GWAS 
results served as a reference. Three main models were 
utilized to generate phenotypes: a null model without 
SNP effects (model 1), a model with variants contributing 
to disease liability (model 2), and a model with an addi-
tional age by genotype interaction (model 3). To evaluate 
each model, we first generated 400 nuclear families con-
sisting of parents and offspring for each iteration, where 
200 families have two children, and 200 families have 
three children (N = 1800). Sex was randomly assigned 
for the children, and age was assigned using the follow-
ing rules: each child’s age was generated under a continu-
ous uniform distribution between 18 to 45 years old; the 
mother was 20–45 years older than the oldest child; the 
father was within five years of the mother’s age, and had 
to be at least 20 years older than the oldest child.

Tmeta =
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For the null model (model 1), we simulated one contin-
uous disease trait using the following formula:

Age and sex explained 10% and 5% of the total pheno-
typic variance, respectively. The polygenic component γ 
followed a multivariate normal distribution with mean 0 
and covariance φσ 2

G , where φ was the kinship matrix of 
one family, and σ 2

G was set to 0.2. The random error ε was 
normally distributed with variance σ 2

E=0.65.
In the second model (model 2), we incorporated eight 

independent causal variants with the following minor 
allele frequencies (MAFs): 1%, 2%, 5%, 10%, 20%, 30%, 
40%, 50% (See Additional File 1 for description and 
results of additional scenarios where less frequent vari-
ations, or variants in linkage disequilibrium (LD) gener-
ated using HAPGEN2 [7] and 1000 Genomes reference 
panel were used). We first assigned parents’ genotypes 
under Hardy–Weinberg equilibrium, i.e., the probability 
of having 0, 1, or 2 minor alleles are p2, 2pq, q2, respec-
tively, where p is the MAF. Then, we determined the 
children’s genotypes through gene dropping, assuming 
that each parent passes down one of their alleles to their 
offspring with an equal chance of selecting either allele. 
Phenotypes were generated as follows:

We assumed trait heritability of 0.28, including 1% of 
total phenotypic variance explained by each of the eight 
causal variants, and variability due to the polygenic com-
ponent γ described in model 1. The βk was calculated 
using 

√
1%

2×MAF×(1−MAF)  . Ten percent of total variance 
was explained by age, and 5% of total variance was 
explained by sex. The remaining variance was explained 
by the normally distributed random error  ε , where σ 2

E

=0.57.
We incorporated into the third model (model 3) an 

interaction between age and genotype of causal variants 
in addition to the eight causal variants:

Causal variants were generated the same way as in 
model 2. We reduced the proportion of phenotypic vari-
ance explained by each causal variant from 1% to 0.5% so 
that the genotype by age interaction term and the gen-
otype term each explained 4% of the total phenotypic 
variance (see Additional File 1 for details regarding an 
additional scenario where we simulated phenotype with 
a larger age effect).

Y = 0.015age + 0.45sex + γ + ε
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The continuous trait Y was transformed to a binary 
case–control status for all three models using a threshold 
model with a disease prevalence of 0.3. To evaluate type 
I error rate of each model, we generated eight independ-
ent, non-causal variants with the same allele frequen-
cies as the causal variants, and assessed their individual 
association with case–control status using CC-GWAS, 
LT-FH, and Fam-meta. For model 1, we completed 
50,000 simulation replicates under H0: there is no asso-
ciation between non-causal variants and case–control 
status, then calculated the proportion of replicates with 
P-value less than 5%, 1%, and 0.5%; for models 2 and 3, 
we completed 5000 replicates and used a 5% alpha level. 
To determine power for models 2 and 3, we examined 
the association between the binary trait of each model 
and the causal SNPs using CC-GWAS, LT-FH, and Fam-
meta. We ran 5000 simulation replicates under H1: there 
is an association between causal variants and case–con-
trol status, and calculated power as the proportion of 
replicates with P-value less than 5%. Note that in all asso-
ciation tests, we only used offspring (N = 1000) for CC-
GWAS, as if the parents’ genotypes were unavailable but 
their phenotypes (case–control statuses) were. LT-FH 
and Fam-meta each leveraged the phenotypes of parents 
accordingly (see descriptions of each method above).

Use of more distant relatives
To test the influence of leveraging more distant relatives’ 
information compared to first-degree relatives, we used 
the phenotypes of grandparents instead of parents as the 
available family history information. We only tested this 
scenario with CC-GWAS and Fam-meta, because LT-FH 
is not designed to incorporate second-degree relatives. A 
new family structure was utilized, where each family still 
comprised two parents with two or three offspring, but 
each parent also had their respective parents, totaling four 
grandparents. Similar to previous simulations, there were 
200 families with two grandchildren and 200 families with 
three grandchildren (N = 3400). Using the new pedigree, 
we simulated phenotypes under model 2, and ran associa-
tion tests using the offspring (N = 1000) for CC-GWAS. 
In terms of the relatives regression conducted in Fam-
meta, we considered two sample sizes: first, all grandpar-
ents (N = 1600), and second, only one pair of randomly 
selected grandparents (N = 800). The purpose of this sce-
nario was to compare whether including a larger number 
of grandparents in association analyses would increase 
power. For each sample size, we ran 5000 iterations.

Application of both methods to the analysis of T2D in FHS
Description of the FHS
The FHS is an ongoing longitudinal cohort study 
that began in 1948, with an initial enrollment of 5209 
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Fig. 1  Type I error rate of CC-GWAS, LT-FH and Fam-meta using alpha levels of a 5%, b 1%, and c 0.5% using the following simulation parameters 
under model 1: The trait heritability was 0.28, and age and sex each explained 10% and 5% of the total variance, respectively. The sample size was 
1800, consisting of 400 simple nuclear families. We ran 50,000 simulations under H0, and type I error rate was evaluated as proportion (%) of P-values 
less than alpha levels of 5%, 1% and 0.5% (indicated by dashed horizontal lines). Exact binomial 95% confidence interval was evaluated for each rate
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first-generation participants who were mainly of Euro-
pean descent. Over the years, the cohort has grown 
substantially to include offspring (Offspring cohort) and 
grandchildren (Gen 3 cohort), while numerous health 
conditions have been monitored to assess cardiovas-
cular diseases and their risk factors. Both LT-FH and 
Fam-meta were applied to the same three generations of 
FHS participants, with T2D case–control status avail-
able for most participants. T2D was defined as having 
at least one of the following conditions: fasting glu-
cose ≥ 7  mmol/L after ≥ 8  h, Hemoglobin A1c ≥ 6.5%-
units, 2-hour glucose by an oral glucose tolerance 
test ≥ 11.1 mmol/L, non-fasting glucose ≥ 11.1 mmol/L, 
physician-diagnosed diabetes, or use of antidiabetic 
medication. Participants with known type 1 diabetes 
were excluded. In the case where a second-generation 
participant’s parent was not part of the original FHS 
cohort, but the participant reported T2D family his-
tory during a follow-up exam, we used those records to 
expand available family information. For participants 
who were genotyped, genetic variant dosages from the 
Haplotype Reference Consortium release 1.1 based 
imputations were used in all analyses. Imputation was 
performed on the Michigan Imputation Server using 
minimac3 and the Haplotype Reference Consortium 
reference panel release 1.1 April 2016 using genetic 
variants passing the following criteria: call-rate ≥ 97%, 
Hardy–Weinberg P ≥ 10–6, < 1000 Mendelian errors, and 
MAF ≥ 1%. Prior to imputation, phasing was performed 
using the duoHMM algorithm incorporated into SHA-
PEIT2 to account for parental genotypes. We excluded 
variants with imputation quality r2 less than 0.3.

Incorporation of family history using LT‑FH
From the full set of FHS participants, we retrieved T2D 
status and T2D family history of 8362 genotyped indi-
viduals, excluding participants of non-European ances-
try, defined using principal component  (PC) analysis.
PCs were first computed with HapMap samples. Mean 
and standard deviation for PC1 and PC2 were com-
puted for White samples, including those in FHS and 
CEU (Utah residents with ancestry from northern and 
western Europe). Participants were labeled as non-
European if the value for PC1 or PC2 was greater than 
6 standard deviations from the mean value for White 
samples. Using the LT-FH software, we calculated the 
posterior mean genetic liability scores for each par-
ticipant based on the participant’s T2D status as well 
as any available parents’ or siblings’ T2D status. Then, 
we used a linear mixed-effects model to evaluate the 
association between T2D liability phenotypic scores 
and each imputed variant, adjusting for participant’s 

last exam age, sex, and the first ten PCs. We addition-
ally adjusted for smoking status (never/former/current 
smoker) in a sensitivity analysis (see Additional File 1 
for more details and results). We accounted for famil-
ial relatedness using a kinship matrix based on the FHS 
participants’ family structures.

Incorporation of family history using Fam‑meta
We first identified two separate samples, one with 
probands (n = 8362) who have both T2D disease sta-
tus and genotypes available, while the other included 
relatives (n = 3780) who only have T2D status but no 
genotypes available. For the first sample, we used a 
logistic mixed-effects regression model to evaluate the 

Table 1  Power of CC-GWAS, LT-FH and Fam-meta using the 
simulation parameters of model 2: we used a proportion 
of phenotypic variance explained by SNPs at 1% each; trait 
heritability was 0.28, while age and sex each explained 10% and 
5% of the total variance, respectively. The sample size was 1800, 
consisting of 400 simple nuclear families. We ran a total of 5000 
simulations under H1

Causal SNP 
minor allele 
frequency

CC-GWAS LT-FH Fam-meta

Power Increase 
from 
CC-GWAS

Power Increase 
from 
CC-GWAS

0.01 0.742 0.770 0.028 0.786 0.044

0.02 0.718 0.757 0.039 0.774 0.056

0.05 0.696 0.750 0.054 0.767 0.071

0.10 0.667 0.732 0.065 0.750 0.083

0.20 0.656 0.716 0.060 0.737 0.081

0.30 0.658 0.714 0.056 0.739 0.081

0.40 0.639 0.707 0.068 0.729 0.090

0.50 0.620 0.689 0.069 0.707 0.087

Table 2  Power of CC-GWAS, LT-FH and Fam-meta under model 
3 scenario with an interaction between age and genotype of 
causal variants. We ran a total of 5000 simulations

Causal SNP 
minor allele 
frequency

CC-GWAS LT-FH Fam-meta

Power Increase 
from 
CC-GWAS

Power Increase 
from 
CC-GWAS

0.01 0.789 0.841 0.052 0.861 0.072

0.02 0.750 0.832 0.082 0.864 0.114

0.05 0.732 0.838 0.106 0.859 0.127

0.10 0.718 0.833 0.115 0.854 0.136

0.20 0.695 0.822 0.127 0.850 0.155

0.30 0.686 0.814 0.128 0.846 0.160

0.40 0.684 0.819 0.135 0.842 0.158

0.50 0.660 0.806 0.146 0.831 0.171
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association between proband’s T2D case–control sta-
tus and individual genetic variants, adjusting for last 
exam age, sex, and the first two PCs that were signifi-
cantly associated with T2D. We accounted for related-
ness using a kinship matrix based on the FHS pedigree. 
The first regression analysis corresponds exactly to 
CC-GWAS. In the second sample, we first matched 
the relatives with their corresponding probands using 
Framingham family identifiers. If a relative was related 
to multiple probands, the probands’ genotypes and phe-
notypes were averaged within the same family. Then, 
we used a logistic mixed-effects model to evaluate the 
association between relative’s T2D case–control status 
and imputed genetic variants based on probands’ geno-
types, adjusting for proband’s phenotype, relative’s last 
exam age, relative’s sex, and the first two PCs. A kinship 
matrix was included to account for familial relatedness. 
For both regression models, we additionally adjusted for 
smoking status in a sensitivity analysis (see Additional 
File 1 for more details and results). Lastly, regression 
coefficients and variances from both regressions were 
combined using the meta-analysis formula provided in 
the original paper [6].

Results
Simulations
Results of type I error rate (all models)
Under model 1, we constructed a phenotype explained by 
age, sex, polygenic effects, and random error. Simulation 
results demonstrated a controlled type I error rate for all 
three approaches at alpha levels of 5%, 1% and 0.5%, i.e., 
the confidence intervals of error rates did not include the 
alpha levels (Fig.  1). In most simulated MAF scenarios, 
the type I error rates of LT-FH were lower than that of 
CC-GWAS and Fam-meta and than expected, illustrat-
ing that LT-FH was the most conservative method. For 

models 2 and 3 that included SNPs to generate the phe-
notype, the type I error rates were controlled as well (See 
Figures S2 and S3, Additional File 1).

Results of power (model 2)
In all simulated MAF scenarios, Fam-meta and LT-FH 
had higher power than CC-GWAS (Table  1), confirm-
ing our hypothesis that leveraging family information 
increases the power of genetic association analyses. In 
addition, Fam-meta was more powerful than LT-FH. Fur-
thermore, simulations with less frequent causal variations 
yielded comparable increases in power from CC-GWAS 
to the two familial history methods (See Additional File 
1 for more details and results). As genetic variant MAF 
increases, there was a greater increase in power from 
CC-GWAS to LT-FH and CC-GWAS to Fam-meta.

Results of power (model 3)
Using a phenotype model that included an interac-
tion term between age and genotype of causal vari-
ants in addition to the causal variants, Fam-meta and 
LT-FH both remained more powerful than CC-GWAS. 
For causal variants with allele frequencies equal to and 
greater than 0.05, the increase in power from CC-GWAS 
to LT-FH and Fam-meta exceeded 10% (Table 2). Overall, 
the increase in power from CC-GWAS to the two famil-
ial methods was twice the increase when no interaction 
term was involved (Tables  1 and 2). This was expected 
because under the interaction model, the prevalence of 
disease increased with age. Therefore, for an offspring 
carrying the disease risk allele, disease phenotypes may 
not be expressed until at a much older age. As the off-
spring must have inherited the risk allele from one of his 
parents, the parent was more likely to be affected with 
the disease given his older age. However, the parent was 
less likely to have genotypes available, as they might be 

Table 3  Power of CC-GWAS and Fam-meta evaluated using more distant relatives’ information. Grandparents’ phenotypic status was 
used instead of parents’ phenotypic status for Fam-meta. We compared the power of Fam-meta when including two grandparents vs. 
four grandparents. LT-FH could not leverage second-degree relatives and thus results are not presented in this table

Causal SNP minor allele 
frequency

Fam-meta Increase in power from CC-GWAS to Fam-
meta

Two grandparents Four grandparents Two grandparents Four 
grandparents

0.01 0.689 0.699 0.011 0.021

0.02 0.672 0.680 0.013 0.020

0.05 0.629 0.655 0.015 0.041

0.10 0.610 0.633 0.022 0.045

0.20 0.601 0.625 0.025 0.049

0.30 0.588 0.609 0.032 0.053

0.40 0.571 0.596 0.021 0.045

0.50 0.562 0.590 0.021 0.050
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Fig. 2  Quantile-Quantile plots of T2D association analysis results based on FHS data using a CC-GWAS, b LT-FH, and c Fam-meta. Each plot 
represents expected -log10 P-values vs. observed -log10 P-values. The gray line denotes y = x, and deviation from the line represents deviation of 
actual P-value from expected P-value under the null hypothesis. The genomic control factor λGC is also shown on each plot
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deceased due to aging or the disease. Under this scenario, 
leveraging the parents’ disease status provided greater 
information in association analyses with offspring, 
because the heritable disease would be detected more 
frequently in older family members.

Use of more distant relatives
While LT-FH could not incorporate grandparents’ dis-
ease status, Fam-meta allowed for more distant relatives, 
so we compared the power of Fam-meta using either two 
or four grandparents, along with the third generation 
offspring. Compared to the association power using par-
ents’ disease status (Table 1), the overall power for Fam-
meta decreased when using grandparents’ disease status 
(Table 3). For each simulated genetic variant, the power 
increased around 1–2% from CC-GWAS to Fam-meta 
when two grandparents were used. The increase in power 
from CC-GWAS to Fam-meta when using four grand-
parents (range between 0.02 to 0.05) was approximately 
half of the increase in power when using parents (range 
between 0.04 to 0.09) (Tables 1 and 3) but was approxi-
mately twice of the increase in power when using only 
two grandparents. Overall, this scenario demonstrated 
that incorporating the disease history of more distant 
relatives could still contribute to an increase in associa-
tion power.

Application to T2D using the FHS dataset
A total of 7,006,827 variants passed our filters (exclud-
ing variants with imputation quality r2 less than 0.3 
and MAF less than 0.01) and were included in the final 
analyses. Quantile–Quantile plots and Manhattan Plots 
of T2D association results using each familial history 
method, compared to CC-GWAS, are shown in Figs.  2 
and 3. According to the genomic control inflation factors 
λGC, there was little to no evidence of type I error infla-
tion (λGC = 1.021 for CC-GWAS, λGC = 1.011 for LT-FH, 
and λGC = 1.045 for Fam-meta, see Fig. 2). Applying the 
genome-wide threshold of P < 5 × 10–8, we confirmed the 
strong association of the TCF7L2 region with T2D using 
all three methods (Fig. 3). In addition, leveraging famil-
ial information increased the significance of the asso-
ciation at this locus compared to CC-GWAS. The top 
variant was rs7903146 (P = 2.0 × 10–12 for LT-FH and 
P = 4.5 × 10–12 for Fam-meta, compared to P = 2.3 × 10–11 
for CC-GWAS, see Table 4).

We also compared test statistics for all three meth-
ods for known T2D gene loci from published link-
age and association studies. We extracted those loci 
and their corresponding P-values from our sum-
mary statistics. After filtering the P-values based on 
P < 10–3 for at least one method, three genetic regions 
remained:  TCF7L2,  CDKN2B-AS1, and  MTNR1B 
(Table 4). No specific pattern was observed for the differ-
ence in significance between the three methods at either 
CDKN2B-AS1 or MTNR1B.

As for the other genetic variants that either passed 
or were close to the genome-wide significance thresh-
old, we observed different patterns for each method. 
LT-FH did not detect any other regions at the genome-
wide level besides the TCF7L2 region; compared to 
CC-GWAS, there was a general decrease in variant 
significance across the genome (Fig.  3b). This trend 
may be explained by the conservativeness of LT-FH, 
as observed in our type I error simulations. In con-
trast, the Fam-meta association results were very 
comparable to that of the CC-GWAS (Fig.  3c). Using 
CC-GWAS and Fam-meta, we detected the same two 
novel low frequency variants at 5q35 (top association: 
rs78825768) and 5q23 (top association: rs150003225) 
(Fig.  4) that passed the genome-wide significance 
threshold and have not been previously reported in 
the literature to be associated with T2D. In addition, 
CC-GWAS was the only method that detected a low 
frequency variant (rs78855997) at the GPC6 locus 
(Fig.  4), also not previously reported to be a T2D 
locus. To visualize the overlapping of results between 
the three methods, we compared the total number of 
variants passing the thresholds of 5 × 10–8, 5 × 10–7, 
and 5 × 10–6 for each method (Fig.  5). With all three 
thresholds, CC-GWAS and Fam-meta shared a higher 
number of variants compared to CC-GWAS and LT-FH 
(Fig.  5). In general, adding family history information 
resulted in a more drastic change in association results 
from CC-GWAS to LT-FH, given the overall reduc-
tion in the number of significant and near-significant 
genetic variants detected by LT-FH. The reduction in 
the number of significant variants was not observed 
when using Fam-meta. Lastly, our main results and 
conclusions did not change when adjusting for smok-
ing status (see Additional File 1 for results of the sensi-
tivity analysis).

(See figure on next page.)
Fig. 3  Manhattan Plots of T2D association analysis based on FHS data results using a CC-GWAS, b LT-FH, and c Fam-meta. For each method, the 
x-axis represents chromosome positions of tested variants across the genome, while the y-axis represents -log10 P-values for the association of 
genetic variants with T2D. The horizontal dashed red line in each figure represents the threshold for genome-wide significance, which corresponds 
to P = 5 × 10–8. All variants that passed the threshold are labelled with their corresponding gene names or closest reference gene names
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Fig. 3  (See legend on previous page.)
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Discussion
We have examined two approaches, LT-FH and Fam-
meta, that incorporate family history into genetic asso-
ciation studies of binary traits. As each approach was 
shown to be more powerful than CC-GWAS in their 
respective study, we compared them against each other 
using simulated data, and evaluated their performances 
in the association analysis of T2D in FHS.

From our simulations comparing LT-FH and Fam-
meta to CC-GWAS, we concluded that Fam-meta was 
the most powerful, while LT-FH was the most conserva-
tive. Moreover, we observed a greater increase in power 
from CC-GWAS to the two familial methods when an 
interaction between age and genotype was added to the 
phenotype model. This indicates that LT-FH and Fam-
meta are more powerful when age has a larger influence 
on the phenotype. In the scenario where we consid-
ered more distant relatives, the power increase from 
CC-GWAS to Fam-meta when using four grandpar-
ents’ phenotypic information was approximately twice 
of the increase in power when only two grandparents 
were used, but half of the increase in power when two 
parents were used. Our conclusions should still hold if 
SNPs in LD are analyzed, since both LT-FH and Fam-
meta described in this paper evaluate the association 
of each variant individually, regardless of whether there 
is any correlation among the variants. Using data from 
the FHS, we detected several genome-wide significant 
hits. First, the TCF7L2 region was detected by all three 
methods. Given TCF7L2 is a well-known transcription 
factor that is consistently associated with T2D in Euro-
peans and other ancestral groups [8], we expected to 
observe a strong association in our cohort as well. There 

was also a decrease in the P-value of the TCF7L2 locus 
using each familial history method compared to using 
CC-GWAS, demonstrating that taking into account the 
disease status of relatives increased the power of detect-
ing known genetic variants. Two loci at 5q35 and 5q23 
(Fig. 4) that passed the genome-wide significant thresh-
old with CC-GWAS and Fam-meta have not yet been 
reported as associated with T2D by previous studies, 
but appear to be particularly promising: promoter and 
enhancer histone marks are described in the adipose 
tissue [9] for the top association at 5q35 that lies in an 
intron of ADAMTS2 (ADAM metallopeptidase with 
thrombospondin type 1 motif 2). ADAMTS2 is primar-
ily expressed in fibroblast cells, with low tissue speci-
ficity [10]. Associations have been detected between 
genetic variants within ADAMTS2 and body fat distri-
bution to the trunk [11], and downregulated ADAMTS2 
expression in heart tissues has been described in car-
diac hypertrophy induced by pressure overload [12]. 
The 5q23 signal lies at 110 kb from the closest reference 
gene PRR16 (proline rich 16), which encodes a cell-size 
regulator and is predominantly expressed in fibroblast 
cells [10]. Differential methylation levels at CpG sites 
within PRR16 have been reported to be associated with 
maternal BMI and coronary heart disease [13]. Inter-
estingly, the two loci were not detected by LT-FH at the 
same level of significance, and we believe this is due to 
the conservativeness of LT-FH. Lastly, the locus at 13q31 
was detected by only CC-GWAS at genome-wide signifi-
cance. The gene in which the top intronic variant resides, 
GPC6 (glypican 6), has higher levels of expression in the 
aortic and pituitary gland tissues [10]. Multiple associa-
tions in this gene have been reported for traits related 

Table 4  Main T2D associations from application to FHS data ordered by CC-GWAS P-value. The first four genetic loci have P-values less 
than the genome-wide significant threshold of P = 5 × 10–8 with at least one method, and the other two loci have been previously 
reported in literature to be associated with T2D and have P-values less than a suggestive threshold of P = 10–3 with at least one 
method

CC-GWAS LT-FH Fam-meta

rsIDs (Chr:b37Pos Mb) Effect Allele 
and Frequency

Closest Gene Label t-statistic P-value t-statistic P-value Tmeta P-value

rs7903146
(10:114.8)

T (0.31) TCF7L2 6.69 2.3 × 10–11 7.04 2.0 × 10–12 6.92 4.5 × 10–12

rs78825768 (5:178.7) C (0.048) ADAMTS2 5.70 1.2 × 10–8 4.53 6.0 × 10–6 5.72 1.1 × 10–8

rs150003225
(5:119.7)

C (0.012) PRR16 5.69 1.3 × 10–8 5.02 5.1 × 10–7 5.53 3.2 × 10–8

rs78855997
(13:94.2)

G (0.010) GPC6 5.51 3.5 × 10–8 4.20 2.6 × 10–5 5.23 1.7 × 10–7

rs2383208
(9:22.1)

G (0.18) CDKN2B-AS1 -4.15 3.4 × 10–5 -4.50 6.8 × 10–6 -4.18 2.9 × 10–5

rs10830963
(11:92.7)

G (0.27) MTNR1B 3.84 1.2 × 10–4 2.53 1.1 × 10–2 3.68 2.4 × 10–4
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Fig. 4  Regional association plots of novel loci a 5q35 (rs78825768) b 5q23 (rs150003225) and c 13q31 (rs78855997) using CC-GWAS results. LD was 
computed using the 1000 Genomes reference panel in the European population
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to T2D, including triglycerides [14], pulse pressure [15], 
and smoking-T2D interaction [16].

Further examining known T2D loci previously iden-
tified in the literature, we did not observe any notable 
increase in significance using LT-FH and Fam-meta 
compared to CC-GWAS, besides the apparent TCF7L2 
region. However, considering that most study cohorts 
already collect family health history information, and 
LT-FH and Fam-meta are both easy to implement, it is 
only beneficial to include family history in association 
studies, even if the increase in power is small. We expect 
the gain in power to be much greater when analyzing a 
disease that is more strongly correlated with aging, such 
as T2D or dementia. If a study sample does not include 
many elderly participants, parents’ disease status can be 
much more informative for studying age-dependent pen-
etrant diseases. Such a scenario was demonstrated by our 
interaction model in the simulations. In addition, LT-FH 
has been extended to LT-FH ++ that adopts an age-
dependent liability threshold model, which accounts for 
disease age of onset in addition to family history [17].

In terms of practicality and application, LT-FH and 
Fam-meta both had their advantages as well as draw-
backs. LT-FH provides a posterior genetic liability score 
even for individuals who had missing disease status, 
as long as the disease status was available for parents 

and/or siblings. In addition, the format required of sib-
ling status was either “at least one sibling with disease” 
or “no disease”, so incomplete sibling status could still 
be informative in LT-FH. On the other hand, for Fam-
meta, the logistic regressions required phenotypes 
available for all probands and relatives. Fam-meta could 
be modified to incorporate all relatives, while LT-FH 
could only use parents and siblings. Fam-meta was 
also easier to implement, because it is an extension of 
the logistic regression model (CC-GWAS). The LT-FH 
software was more computationally intensive when the 
sample size was large.

There are several limitations to our study. First, there 
could be some inaccuracy in the T2D family history infor-
mation in the FHS that was self-reported. Secondly, when 
performing simulations, we needed to limit the sample 
size for each iteration because LT-FH was computation-
ally intensive. Moreover, given the predominantly Euro-
pean ancestry of participants in the FHS cohort, our results 
may not generalize to other population groups. Finally, 
we did not study the effect of incorporating family history 
into rare variant association analysis. A recently published 
new method, family history aggregation unit-based test 
(FHAT), further extended LT-FH to analyze rare variants 
[18]. FHAT was able to detect genes with suggestive asso-
ciations with several diseases in FHS [19]. Some additional 

Fig. 5  Venn diagram displaying the number of genetic variants that passed specific significant thresholds in CC-GWAS, LT-FH and Fam-meta. This 
figure presents the variant counts with P-values less than a specific threshold of a P = 5 × 10–8, b 5 × 10–7 and c 5 × 10–6 for each method, as well as 
the number of variants in common between each method



Page 13 of 14Zhang et al. BMC Genomics          (2022) 23:678 	

work may include more extensive simulation scenarios, 
such as simulating more complex family structures, and 
adding more causal variants. One could also extend the 
application of both approaches to other diseases with dif-
ferent heritability, such as hypertension and lung cancer.

Conclusions
In this paper, we examined two innovative approaches that 
extend GWAS to incorporate familial history, regardless 
of genotyping status. LT-FH uses liability threshold mod-
eling, while Fam-meta meta-analyzes summary statistics 
from two logistic regressions. As presented throughout our 
analyses in simulations and application to FHS data, both 
LT-FH and Fam-meta outperformed, or performed equally 
well as CC-GWAS. Therefore, we highly recommend the 
inclusion of family disease history in GWAS using the two 
approaches addressed in this study. Researchers can use 
our results to determine whether LT-FH or Fam-meta is 
more suitable for their studies.
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