242 research outputs found
Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation
We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO(sub 3) crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO(sub 3) sample produced at five times less fluence is on average two times greater than that of the reference
Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study
We present a theoretical study of capillary condensation of fluids adsorbed
in mesoporous disordered media. Combining mean-field density functional theory
with a coarse-grained description in terms of a lattice-gas model allows us to
investigate both the out-of-equilibrium (hysteresis) and the equilibrium
behavior. We show that the main features of capillary condensation in
disordered solids result from the appearance of a complex free-energy landscape
with a large number of metastable states. We detail the numerical procedures
for finding these states, and the presence or absence of transitions in the
thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte
Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior
We study the interplay between hysteresis and equilibrium behavior in
capillary condensation of fluids in mesoporous disordered materials via a
mean-field density functional theory of a disordered lattice-gas model. The
approach reproduces all major features observed experimentally. We show that
the simple van der Waals picture of metastability fails due to the appearance
of a complex free-energy landscape with a large number of metastable states. In
particular, hysteresis can occur both with and without an underlying
equilibrium transition, thermodynamic consistency is not satisfied along the
hysteresis loop, and out-of-equilibrium phase transitions are possible.Comment: 4 pages, 4 figure
Lattice model of gas condensation within nanopores
We explore the thermodynamic behavior of gases adsorbed within a nanopore.
The theoretical description employs a simple lattice gas model, with two
species of site, expected to describe various regimes of adsorption and
condensation behavior. The model includes four hypothetical phases: a
cylindrical shell phase (S), in which the sites close to the cylindrical wall
are occupied, an axial phase (A), in which sites along the cylinder's axis are
occupied, a full phase (F), in which all sites are occupied, and an empty phase
(E). We obtain exact results at T=0 for the phase behavior, which is a function
of the interactions present in any specific problem. We obtain the
corresponding results at finite T from mean field theory. Finally, we examine
the model's predicted phase behavior of some real gases adsorbed in nanopores
New limits on the resonant absorption of solar axions obtained with a Tm-containing cryogenic detector
A search for resonant absorption of solar axions by Tm nuclei was
carried out. A newly developed approach involving low-background cryogenic
bolometer based on TmAlO crystal was used that allowed for
significant improvement of sensitivity in comparison with previous Tm
based experiments. The measurements performed with g crystal during
days exposure yielded the following limits on axion couplings:
GeV and
.Comment: 7 pages, 5 figure
Observation of the plasma channel dynamics and Coulomb explosion in the interaction of a high-intensity laser pulse with a He gas jet
We report the first interferometric observations of the dynamics of electron-ion cavitation of relativistically self-focused intense 4 TW, 400 fs laser pulse in a He gas jet. The electron density in a channel 1 mm long and 30 μm in diameter drops by a factor of approximately 10 from the maximum value of ∼8×10 19 cm −3 . A high radial velocity of the plasma expansion, ∼3.8×10 8 cm/s, corresponding to an ion energy of about 300 keV, is observed. The total energy of fast ions is estimated to be 6% of the laser pulse energy. The high-velocity radial plasma expulsion is explained by a charge separation due to the strong ponderomotive force. This experiment demonstrates a new possibility for direct transmission of a significant portion of the energy of a laser pulse to ions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45800/1/11448_2006_Article_813.pd
- …