29 research outputs found

    Study on Sedation with Local Analgesia in Calves

    Get PDF
    . The effect of sedatives and analgesics on heart rate, respiration rate and rectal temperature were observed. Heart rate and respiration rate significantly decreased during sedation with xylazine hydrochloride plus 2% lignocaine hydrochloride or 0.5% bupivacaine hydrochloride. A significantly decreased heart rate and respiration rate also found during sedation with diazepam plus 2% lignocaine hydrochloride or 0.5% bupivacaine hydrochloride. Two percent lignocaine hydrochloride showed short onset, rapid spreading and no side effect. Duration of analgesia was longer with 0.5 % bupivacaine hydrochloride (55.88±1.58 min in Group B and 48±11.25 min in Group D) compared to 2% lignocaine hydrochloride (39.60±5.77 min in Group A and 43.6±5.81 min in Group C). Xylazine hydrochloride showed short onset and long duration of sedation compared to diazepam. So for herniorraphy, xylazine hydrochloride can be used as a better sedative while 0.5 % bupivacaine hydrochloride can be used as a local analgesic for longer duration of action

    Soy protein–gum karaya conjugate: emulsifying activity and rheological behavior in aqueous system and oil in water emulsion

    Get PDF
    The main objective of this study is to investigate the effects of mixing and conjugation of soy protein isolate (SPI) with gum karaya on the characteristics of the hybrid polymer (protein–gum) in both aqueous systems and oil-in-water (O/W) emulsions. It was hypothesized that the covalent linkage of gum karaya with SPI would improve the emulsifying activity and rheological properties of both polymers. Conjugation occurred under controlled conditions (i.e., 60 °C and 75 % relative humidity, 3 days). The conjugated hybrid polymer produced smaller droplet with better uniformity, higher viscosity and stronger emulsifying activity than native gum karaya, suggesting the conjugated polymer provided a bulkier secondary layer with more efficient coverage around oil droplets, thereby inducing stronger resistance against droplet aggregation and flocculation. Emulsions containing the native gum karaya produced the largest droplet size among all prepared emulsions (D 3,2 = 8.6 μm; D 4,3 = 22.4 μm); while the emulsion containing protein–gum conjugate (1:1 g/g) had the smallest droplet size (D 3,2 = 0.2 μm; D 4,3 = 0.7 μm) with lower polydispersity. The protein–gum conjugate (1:1 g/g) also showed the highest elastic and viscous modulus, the lowest polydispersity (span) and the highest emulsifying activity among all native, mixed and conjugated polymers. Therefore, the percentage of gum karaya used for production of O/W emulsion can be decreased by partially replacing it with the conjugated gum

    Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.

    Get PDF

    PIK3CA mutations are frequent in esophageal squamous cell carcinoma associated with chagasic megaesophagus and are associated with a worse patient outcome

    Get PDF
    Chronic diseases such as chagasic megaesophagus (secondary to Chagas' disease) have been suggested as etiological factors for esophageal squamous cell carcinoma; however, the molecular mechanisms involved are poorly understood.Background Chronic diseases such as chagasic megaesophagus (secondary to Chagas’ disease) have been suggested as etiological factors for esophageal squamous cell carcinoma; however, the molecular mechanisms involved are poorly understood. Objective We analyzed hotspot PIK3CA gene mutations in a series of esophageal squamous cell carcinomas associated or not with chagasic megaesophagus, as well as, in chagasic megaesophagus biopsies. We also checked for correlations between the presence of PIK3CA mutations with patients’ clinical and pathological features. Methods The study included three different groups of patients: i) 23 patients with chagasic megaesophagus associated with esophageal squamous cell carcinoma (CM/ESCC); ii) 38 patients with esophageal squamous cell carcinoma not associated with chagasic megaesophagus (ESCC); and iii) 28 patients with chagasic megaesophagus without esophageal squamous cell carcinoma (CM). PIK3CA hotspot mutations in exons 9 and 20 were evaluated by PCR followed by direct sequencing technique. Results PIK3CA mutations were identified in 21.7% (5 out of 23) of CM/ESCC cases, in 10.5% (4 out of 38) of ESCC and in only 3.6% (1 case out of 28) of CM cases. In the CM/ESCC group, PIK3CA mutations were significantly associated with lower survival (mean 5 months), when compared to wild-type patients (mean 2.0 years). No other significant associations were observed between PIK3CA mutations and patients’ clinical features or TP53 mutation profile. Conclusion This is the first report on the presence of PIK3CA mutations in esophageal cancer associated with chagasic megaesophagus. The detection of PIK3CA mutations in benign chagasic megaesophagus lesions suggests their putative role in esophageal squamous cell carcinoma development and opens new opportunities for targeted-therapies for these diseases.CAPES and FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo [Grant number 2015/20077–3 to FFM] and Barretos Cancer Hospital internal research funds (PAIP)info:eu-repo/semantics/publishedVersio

    Electric Vehicles Aggregation in Market Environment: A Stochastic Grid-to-Vehicle and Vehicle-to-Grid Management

    No full text
    Part 10: Energy MarketsInternational audienceThis paper addresses a development of a support management system for a power system aggregator managing a fleet of electric vehicles and bidding in a day-ahead electricity market. The support management system is modeled by stochastic mixed integer linear programming approach. The charge and discharge of the batteries of the fleet of vehicles are brought about to a convenient contribution for the maximization of the expected profit of the aggregator. The optimization takes into consideration the profiles of usage of the vehicle owners and the battery degradation of the vehicles. The vehicles are assumed as bidirectional energy flow units: allowing grid-to-vehicle or vehicle-to-grid operation modes. A strong interaction of information exchange is assumed between the aggregator and vehicle owners. A set of scenarios is created by a scenario generation method based on the Kernel Density Estimation technique and are subjected to a reduction by a K-means clustering technique. A case study with data of Electricity Market of Iberian Peninsula is presented to drive conclusion about the support management system developed

    Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea

    No full text
    Congenital sodium diarrhea (CSD) refers to an intractable diarrhea of intrauterine onset with high fecal sodium loss. CSD is clinically and genetically heterogeneous. Syndromic CSD is caused by SPINT2 mutations. While we recently described four cases of the non-syndromic form of CSD that were caused by dominant activating mutations in intestinal receptor guanylate cyclase C (GC-C), the genetic cause for the majority of CSD is still unknown. Therefore, we aimed to determine the genetic cause for non-GC-C non-syndromic CSD in 18 patients from 16 unrelated families applying whole-exome sequencing and/or chromosomal microarray analyses and/or direct Sanger sequencing. SLC9A3 missense, splicing and truncation mutations, including an instance of uniparental disomy, and whole-gene deletion were identified in nine patients from eight families with CSD. Two of these nine patients developed inflammatory bowel disease (IBD) at 4 and 16 years of age. SLC9A3 encodes Na(+)/H(+) antiporter 3 (NHE3), which is the major intestinal brush-border Na(+)/H(+) exchanger. All mutations were in the NHE3 N-terminal transport domain, and all missense mutations were in the putative membrane-spanning domains. Identified SLC9A3 missense mutations were functionally characterized in plasma membrane NHE null fibroblasts. SLC9A3 missense mutations compromised NHE3 activity by reducing basal surface expression and/or loss of basal transport function of NHE3 molecules, whereas acute regulation was normal. This study identifies recessive mutations in NHE3, a downstream target of GC-C, as a cause of CSD and implies primary basal NHE3 malfunction as a predisposition for IBD in a subset of patients

    A metabolomic approach to identifying chemical mediators of mammal-plant interactions

    No full text
    Different folivorous marsupials select their food from different subgenera of Eucalyptus, but the choices cannot be explained by known antifeedants, such as formylated phloroglucinol compounds or tannins, or by nutritional quality. Eucalypts contain a wide variety of plant secondary metabolites so it is difficult to use traditional methods to identify the chemicals that determine food selection. Therefore, we used a metabolomic approach in which we employed (1)H nuclear magnetic resonance spectroscopy to compare chemical structures of representatives from the two subgenera and to identify chemicals that consistently differ between them. We found that dichloromethane extracts of leaves from most species in the subgenus Eucalyptus differ from those in Symphyomyrtus by the presence of free flavanones, having no substitution in Ring B. Although flavanoids are known to deter feeding by certain insects, their effects on marsupials have not been established and must be tested with controlled feeding studies
    corecore