129 research outputs found

    Power Oscillation Damping Control using Robust Coordinated Smart Devices

    Get PDF
    The lack of damping of the electromechanical oscillation modes usually causes severe problems of low frequency oscillations in interconnected power systems. In the extreme operating conditions, PSS may fail to damp power oscillation. This paper presents a robust coordinated design of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) to damp power oscillation in an interconnected power system. The inverse additive perturbation is applied to represent unstructured uncertainties in the power system such as variations of system parameters, system generating and loading conditions. In addition, genetic algorithm is employed to search a robust tuning to the controller parameters of both PSS and TCSC simultaneously. Simulation studies have been done in a single machine infinite bus system to confirm that the performance and robustness of the proposed controller are superior to that of the conventional controller

    Integrated Gas – Electricity Network - Combined Heat and Power Optimization with Associated Petroleum and Wet Gas Utilization Constraint

    Get PDF
    Aside from liquid hydrocarbon, oil exploration also produces associated petroleum gas and wet gas. The use of associated petroleum and wet gas adversely affects gas turbine performance and gas line operation in several ways such as low gas quality, unstable heating value, and high H2S content. This research develops an integrated gas – combined heat and power optimal power flow with associated petroleum and wet gas utilization constraint.  Thermodynamic equations are used to model gas turbine and gas network operation when subjected to low-quality fuels. To meet the fuel quality standard, additional constraints are considered. These constraints include the Modified Wobbe Index, a critical parameter for gas turbines, and H2S content, a critical parameter for pipelines. The results show that the proposed model can optimize combined heat and power cost by determining the most efficient power – steam dispatch, optimal fuel mixture and gas line pressure settings, while still meeting operational constraints

    The Solution for Optimal Power Flow (OPF) Method Using Differential Evolution Algorithm

    Get PDF
    Optimal Power Flow (OPF) is one of techniques used to optimize the cost of power plant production while maintaining the limit of system reliability. In this paper, the application of differential evolution (DE) method is used to solve the OPF problem with variable control such as the power plant output, bus voltage tension, transformer tap, and injection capacitor. The effectiveness of the method was tested using IEEE 30 buses. The result shows that this method is better than generic algorithm (GA), particle swarm optimized (PSO), fuzzy GA, fuzzy PSO, and bat-algorithm. The simulation of the power plant systems of 500 kV Java-Bali with the proposed method can reduce the total cost of generation by 13.04% compared to the operating data PT. PLN (Persero)

    Role Analysis of Distributed Generation Towards Transmission Expansion Planning Using MILP

    Get PDF
    Electricity demand increase as function of population and economic activity growth. To meet the demand growth, one kind of approaches to expand electrical system is to calculate the need of generating unit and the result will be used to determine the needs of transmission line. In this research, a model was developed with focused on transmission line expansion based on Mix Integer Linear Programming method. The objective function was to minimize overall investment cost for transmission and operating cost of all generating units. The developed model was implemented in 6-bus Garver’s test system. Distributed generation implementation impact is also studied in this study in term of network configuration and overall expansion cost. The results show that distributed generation implementation will differ the network configuration and reduce the overall system cost, with overall system cost with and without distributed generation implementation was 106.4millionand106.4 million and 103.18 million respectively

    Electricity Demand and Supply Planning Analysis for Sumatera Interconnection System using Integrated Resources Planning Approach

    Get PDF
    The Sumatra interconnection system, which is the second-largest electricity system in Indonesia, is often experiencing rolling blackouts. That caused by a lack of supply from the power generating system of Sumatra. The Government has planned to develop new power plants through the fast track program (FTP). Until 2015, either power outages and supply shortages are still common. Therefore, an analysis of long-term electricity planning needed to support energy security in Sumatra. The Sumatra electricity system was modelled using integrated resource planning as a framework and the long-range energy alternative planning (LEAP) software as a tool to build and simulate the model. Three groups of scenarios will be compared are the fast track program (FTP) scenario, the biofuel mandatory (BM) scenario and optimization (OPT) scenario. The results show that the implementation of DSM programs through energy conservation scenario would be able to reduce the electricity demand in the future. On the other side, the alternative scenario shows that the electricity deficit could be resolved in 2022, while the optimization scenario shows that energy diversity would resolve the electricity crisis in the Sumatra interconnection system

    Optimasi Aliran Daya pada Sistem Kelistrikan Opsi Nuklir Berdasarkan Multi-Objective Function: Fuel Cost dan Flat Voltage Profile

    Full text link
    Tujuan dari pengoperasian sistem tenaga listrik adalah untuk memasok daya dengan kualitas baik dan biaya pembangkitan seminimal mungkin. Kualitas yang baik membutuhkan biaya yang lebih besar, sehingga untuk mencapai tujuan tersebut diperlukan optimasi dengan fungsi obyektif yang bertujuan untuk memaksimalkan kualitas sekaligus meminimalkan biaya. Penelitian ini bertujuanuntuk mendapatkan kondisi aliran daya optimal atau optimal power flow (OPF) dari segi biaya pembangkitan maupun kualitas tenaga listrik di suatu sistem kelistrikan dengan opsi nuklir pada waktu beban puncak dengan menggabungkan fungsi obyektif fuel cost dan flat voltage profile. Fungsi obyektif fuel cost bertujuan untuk meminimalkan biaya pembangkitan sedangkan fungsi obyektif flat voltage profile bertujuan untuk memaksimalkan kualitas dengan meminimalkan perbedaan/variasi tegangan dalam sebuah sistem. Penelitian dilakukan melalui studi literatur, penentuan fungsi obyektif optimasi, penggabungan fungsi objektif, simulasi menggunakan contoh kasus dan analisis sensitivitas. Contoh kasus menggunakan sistem IEEE 9 Bus yang telah ditambahkan fungsi bahan bakar PLTN, PLTU, dan PLTG. Simulasi menggunakan program bantu ETAP 12.6.0. Analisis sensitivitas dilakukan dengan menggunakan nilai pembobotan dari 0-100% untuk tiap fungsi obyektif. Hasil simulasi menunjukkan bahwa OPF dicapai pada faktor pembebanan 60% untuk fuel cost dan 40% untuk flat voltage profile. Biaya pembangkitan padakondisi optimal tersebut sebesar 7266 US$/jam dengan selisih tegangan maksimum minimumnya sebesar 2,85%. Pada sistem ini PLTU membangkitkan daya sebesar 133,2 MW + 22,1 MVar dan PLTG sebesar 80,7 MW + 13,8 MVar. Sedangkan PLTN membangkitkan daya sebesar 89,9 MW + 12,9 Mvar dan akan ekonomis jika membangkitkan daya kurang dari 90 MW

    Maximum Power Point Tracking using Particle Swarm Optimization Algorithm for Hybrid Wind-Tidal Harvesting System on the South Coast of Java

    Get PDF
    This paper proposes a hybrid wind-tidal harvesting system (HWTHS). To extract maximum power from the wind and tidal, HWTHS implements particle swarm optimization (PSO) algorithm in maximum power point tracking (MPPT) method. The proposed HWTHS had been tested on the range of possible input appropriate to the characteristics of the southern coast of Java. The presented result shows that by using PSO-based MPPT algorithm, maximum power point can be achieved. Thus the efficiency of HWTHS is 92 %, 94 % in wind section and 91 % in tidal section. By using PSO-based MPPT, HWTHS can respond well to changes in wind and tidal speed, whether it's a change from low speed to a higher speed or change from high speed to lower speed wherein time to reach new steady state is ± 0.1 s. At varied wind and tidal speed, PSO algorithm can maintain Cp of the system in the range of 0.47 - 0.48 so that power can be extracted to the maximum

    Ant Colony Optimization for Resolving Unit Commitment Issues by Considering Reliability Constraints

    Get PDF
    Unit Commitment or generator scheduling is one of complex combination issues aiming to obtain the cheapest generating power total costs. Ant Colony Optimization is proposed as a method to solve Unit Commitment issues because it has a better result convergence according to one of journals that reviews methods to solve Unit Commitment issues. Ant Colony Optimization modification into Nodal Ant Colony Optimization as well as addition of several elements are also conducted to overcome Ant Colony Optimization limitations in resolving Unit Commitment issues. Nodal Ant Colony Optimization simulations are then compared with Genetic Algorithm and Simulated Annealing methods which previously has similar simulations. Reliability index combination in a form of Loss of Load Probability and Expected Unserved Energy are also added as reliability constraints in the system. Comparison of three methods shows that Nodal Ant Colony Optimization is able to provide better results up to 0.08% cheaper than Genetic Algorithm or Simulated Annealing methods

    Long-term Electricity Demand Forecasting of Sumatera System Based on Electricity Consumption Intensity and Indonesia Population Projection 2010-2035

    Get PDF
    AbstractAn important step in energy management especially in electricity planning is demand forecasting. A simple model is presented using LEAP (Long-range Energy Alternative Planning System) as a tool and Sumatera systems as a case study. It aims to be easy to understand and applicable. Electricity demand in household sector is calculated based on data of population, household size, electrification ratio and electricity intensity. On the other hand, electricity demand in non-household sector is calculated as a product of number of customers and its electricity intensity. The base year is 2010 and 2025 is the end of forecasting period. The result shows that electricity demand in Sumatera system would be increase more than seven times compared to base year value. A comparative study was also carried out
    • …
    corecore