45 research outputs found

    The Relationships Between Personality, Perceived Social Support, and Structure of Friend Groups

    Get PDF
    Friendship formation has been studied by many psychologists, focusing predominately on connectedness within the friendship and less focused on variation of characteristics within the group that influence group dynamic (Laakasu et. al., 2016). Personality traits are a large contributing factor when determining relationship satisfaction, specifically Neuroticism and Extraversion. Having high Neuroticism has shown to be a consistent predictor of low relationship quality (Finn, Mite, & Neyer, 2013). On the contrary, Extraversion’s positive affect (i.e. characterized as being cheerful, energetic, and social) is associated with better relationship outcomes (Lyubomirsky, King, & Deiner, 2005). Undergraduate students (N = 50) completed a survey containing a personality assessment, perceived social support questionnaire, friendship structure questionnaire, and demographics on Qualtrics. We anticipate participants who score higher on neuroticism will report less perceived social support and feeling less at the center of the friend group. Participants who score higher on extraversion will perceive social support positively and will report feeling at the center of the friend group. Assessing the perceived social support and structure of a friend group from an individual allows us to better understand that individual’s associated personality traits

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star

    Get PDF
    We report the observation of a coalescing compact binary with component masses 2.5–4.5 M ⊙ and 1.2–2.0 M ⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M ⊙ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55−47+127Gpc−3yr−1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Co-Creation in Living Labs to Accelerate Innovation

    No full text
    Innovation in the construction sector occurs as stepwise reconfigurations of subsystems, but sometimes the effect of many systems coincides and there is so called radical change. Stepwise reconfigurations of individual systems such as windows, insulation, and heat recovery systems have made it possible to heat buildings with preheated inlet air instead of water radiators. Thus, making building more sustainable, cheaper and resource-efficient; the potential for radical change has been achieved. The question is then why not every new building uses preheated inlet air? The reason is not the lack of innovation or new technologies. It is rather connected to malfunctioning structures related to incentives, collaboration, testing, and validation, resulting in norms and standards that aim to reproduce existing technologies, preferring incremental innovations over radical ones.This article argues that testbeds and Living Labs are a way to work on complex, multi-stakeholder and urgent problems in a co-creative way. In these labs there are possibilities to test technologies, in systems, in real buildings and cities. There are possibilities to follow-up, measure and adjust; to live, study, work and develop. The Living Labs have the potential of making new technologies standard to use in the course of years instead of decades and thus minimize unnecessary use of resources linked to the construction and use of buildings. In addition, it will help to make technologies more user-friendly, considering user needs, wishes and experiences, thus contributing to the effectiveness of the technologies developed and tested.QC 20201009</p

    Nondestructive Evaluation of Mechanical and Histological Properties of the Human Aorta With Near-Infrared Spectroscopy

    No full text
    Introduction: Ascending aortic dilatation is a well-known risk factor for aortic rupture. Indications for aortic replacement in its dilatation concomitant to other open-heart surgery exist; however, cut-off values based solely on aortic diameter may fail to identify patients with weakened aortic tissue. We introduce near-infrared spectroscopy (NIRS) as a diagnostic tool to nondestructively evaluate the structural and compositional properties of the human ascending aorta during open-heart surgeries. During open-heart surgery, NIRS could provide information regarding tissue viability in situ and thus contribute to the decision of optimal surgical repair. Materials and methods: Samples were collected from patients with ascending aortic aneurysm (n = 23) undergoing elective aortic reconstruction surgery and from healthy subjects (n = 4). The samples were subjected to spectroscopic measurements, biomechanical testing, and histological analysis. The relationship between the near-infrared spectra and biomechanical and histological properties was investigated by adapting partial least squares regression. Results: Moderate prediction performance was achieved with biomechanical properties (r = 0.681, normalized root-mean-square error of cross-validation = 17.9%) and histological properties (r = 0.602, normalized root-mean-square error of cross-validation = 22.2%). Especially the performance with parameters describing the aorta's ultimate strength, for example, failure strain (r = 0.658), and elasticity (phase difference, r = 0.875) were promising and could, therefore, provide quantitative information on the rupture sensitivity of the aorta. For the estimation of histological properties, the results with α-smooth muscle actin (r = 0.581), elastin density (r = 0.973), mucoid extracellular matrix accumulation(r = 0.708), and media thickness (r = 0.866) were promising. Conclusions: NIRS could be a potential technique for in situ evaluation of biomechanical and histological properties of human aorta and therefore useful in patient-specific treatment planning.Peer reviewe

    Wall Shear Stress Predicts Media Degeneration and Biomechanical Changes in Thoracic Aorta

    Get PDF
    Objectives: In thoracic aortic aneurysm (TAA) of the ascending aorta (AA), AA is progressively dilating due to the weakening of the aortic wall. Predicting and preventing aortic dissections and ruptures in TAA continues to be challenging, and more accurate assessment of the AA dilatation, identification of high-risk patients, and timing of repair surgery are required. We investigated whether wall shear stress (WSS) predicts pathological and biomechanical changes in the aortic wall in TAA. Methods: The study included 12 patients with bicuspid (BAV) and 20 patients with the tricuspid aortic valve (TAV). 4D flow magnetic resonance imaging (MRI) was performed a day before aortic replacement surgery. Biomechanical and histological parameters, including assessing of wall strength, media degeneration, elastin, and cell content were analyzed from the resected AA samples. Results: WSSs were greater in the outer curves of the AA compared to the inner curves in all TAA patients. WSSs correlated with media degeneration of the aortic wall (ρ = -0.48, p < 0.01), elastin content (ρ = 0.47, p < 0.01), and aortic wall strength (ρ = -0.49, p = 0.029). Subsequently, the media of the outer curves was thinner, more rigid, and tolerated lower failure strains. Failure values were shown to correlate with smooth muscle cell (SMC) density (ρ = -0.45, p < 0.02), and indicated the more MYH10+ SMCs the lower the strength of the aortic wall structure. More macrophages were detected in patients with severe media degeneration and the areas with lower WSSs. Conclusion: The findings indicate that MRI-derived WSS predicts pathological and biomechanical changes in the aortic wall in patients with TAA and could be used for identification of high-risk patients.publishedVersionPeer reviewe

    Multivariate Genome-wide Association Analysis of a Cytokine Network Reveals Variants with Widespread Immune, Haematological, and Cardiometabolic Pleiotropy

    Get PDF
    Cytokines are essential regulatory components of the immune system, and their aberrant levels have been linked to many disease states. Despite increasing evidence that cytokines operate in concert, many of the physiological interactions between cytokines, and the shared genetic architecture that underlies them, remain unknown. Here, we aimed to identify and characterize genetic variants with pleiotropic effects on cytokines. Using three population-based cohorts (n = 9,263), we performed multivariate genome-wide association studies (GWAS) for a correlation network of 11 circulating cytokines, then combined our results in meta-analysis. We identified a total of eight loci significantly associated with the cytokine network, of which two (PDGFRB and ABO) had not been detected previously. In addition, conditional analyses revealed a further four secondary signals at three known cytokine loci. Integration, through the use of Bayesian colocalization analysis, of publicly available GWAS summary statistics with the cytokine network associations revealed shared causal variants between the eight cytokine loci and other traits; in particular, cytokine network variants at the ABO, SERPINE2, and ZFPM2 loci showed pleiotropic effects on the production of immune-related proteins, on metabolic traits such as lipoprotein and lipid levels, on blood-cell-related traits such as platelet count, and on disease traits such as coronary artery disease and type 2 diabetes.Peer reviewe
    corecore