49 research outputs found
Neonatal jaundice and stool production in breast- or formula-fed term infants
It has remained unclear whether the amount of fecal fat excreted in the stool and stool production influences the severity of neonatal jaundice. We determined the relationship between stool production, fecal fat excretion and jaundice in healthy breast-fed (BF) or formula-fed (FF) (near-)term neonates. From postnatal day 1–4, we quantitatively collected stools from 27 FF and 33 BF infants in daily fractions. Stool production and fecal fat contents were related to unconjugated bilirubin (UCB) levels, as determined by transcutaneous bilirubinometry (TcB). Bilirubin concentrations and stool production did not differ between FF and BF neonates during the study period. Neonatal bilirubin levels were not inversely correlated with stool production. FF and BF infants had similar fecal fat excretion rates. The stool production of FF infants was profoundly lower in the present study than in a 1985 study by De Carvalho et al. [J Pediatr (1985) 107:786–790]. We conclude that increased jaundice during the first postnatal days in healthy term neonates can no longer be attributed to breast-feeding and speculate that improved absorbability of formulas since 1985 has contributed to similar fat excretion and stool production in FF and BF neonates in 2007
Identifying a Window of Vulnerability during Fetal Development in a Maternal Iron Restriction Model
It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses. We established four different dietary-feeding protocols that were designed to render the fetuses iron deficient at different gestational stages. Based on a functional analysis that employed Auditory Brainstem Response measurements, we found that maternal iron restriction initiated prior to conception and during the first trimester were associated with profound changes in the developing fetus compared to iron restriction initiated later in pregnancy. We also showed that the presence of iron deficiency anemia, low body weight, and changes in core body temperature were not defining factors in the establishment of neural impairment in the rodent offspring
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Neonatal hypokalemia
Dilek Sarici1, S Umit Sarici21Kecioren Research and Education Hospital, Kecioren, Ankara, 2Chief of Division of Neonatology, Division of Neonatology, Department of Pediatrics, Gulhane Military Medical Academy, Ankara, TurkeyAbstract: In this article, distribution of potassium (K+) in body fluids, pathophysiology, causes, clinical signs and symptoms, and the evaluation and treatment of neonatal hypokalemia are reviewed. K+ is the most important intracellular cation and normal serum K+ is stabilized between 3.5 and 5.5 mEq/L. Hypokalemia may be caused by increased renal losses, increased extrarenal (gastrointestinal) losses, redistribution or prolonged insufficient K+ intake. Clinical signs and symptoms occur as the result of functional changes in striated muscle, smooth muscle, and the heart. Hypokalemia is usually asymptomatic when K+ levels are between 3.0 and 3.5 mEq/L; however, there may sometimes be slight muscle weakness. Moderate hypokalemia is observed when serum K+ is between 2.5 and 3.0 mEq/L. Proximal muscle weakness is observed most commonly in lower extremities; cranial muscles are normal, but constipation and distention are prominent. Severe hypokalemia develops when serum K+ falls below 2.5 mEq/L. Rhabdomyolysis, myoglobinuria, severe muscle weakness, paralysis, respiratory distress, and respiratory arrest are observed. The clinical signs and symptoms may be unremarkable in cases of chronically developing hypokalemia; however, appropriate treatment is essential when serum K+ level falls below 2.5 mEq/L as the most dangerous complication of hypokalemia is fatal cardiac arrythmia, and changes visible with electrocardiography may not always correlate with the level of hypokalemia. Sodium (Na+), K+, chloride (Cl-), bicarbonate, creatinine, blood sugar, magnesium (Mg), plasma renin activity, aldosterone, and blood gases should be investigated by laboratory testing. Aspartate aminotransferase, alanine aminotransferase, creatinine kinase, and creatinine kinase isoenzyme MB should be studied if rhabdomyolysis is suspected. In urine sample density, pH, Na+, K+, Cl-, Mg, creatinine, and myoglobinuria (blood reaction is positive in the absence of erythrocytes on microscopic examination of urine) should be investigated. The primary aim of therapy is to prevent and treat life-threatening cardiac and muscular complications. However, in the presence of severe symptomatic hypokalemia and gastrointestinal problems such as ileus, the intravenous route may be used in cases where serum K+ level is usually below 2.6 mEq/L. K+ given in intravenous fluids should not exceed 40 mEq/L. In case of emergency, 0.3&ndash;1 mEq/kg of K+ may be given intravenously over 1 hour. When higher concentrations (60&ndash;80 mEq/L) are needed, infusion through a central vein under electrocardiography monitoring may be used.Keywords: neonatal, hypokalemia, newborn&nbsp
Diffuse preretinal infiltrates in a patient with orbital atypical T-cell lymphoproliferative infiltration masquerading posterior uveitis
Purpose: To report an aggressive and rapidly progressive case of atypical T-cell lymphoproliferative infiltration both with intraocular and orbital involvement and preretinal infiltrates.Methods: Medical records and imaging of the patient were retrospectively reviewed.Case presentation: A 25-year-old woman presented first with preretinal infiltrates resembling uveitis and developed orbital and intracranial signs eventually during her evaluation. Clinical presentation worsened gradually. The patient developed bilateral proptosis, pupillary dilation and uvula deviation. Diagnostic orbital incision biopsy revealed T-cell lymphoproliferative disease. Conclusion: This case gives evidence that intraocular involvement due to T-cell lymphoproliferative disease may present as a masquerade syndrome and should be kept in mind in patients with extraordinary presentation
Neonatal ibuprofen exposure and bronchopulmonary dysplasia in extremely premature infants
OBJECTIVE: To evaluate the association of ibuprofen exposure with the risk of bronchopulmonary dysplasia (BPD) in extremely premature infants. STUDY DESIGN: This was a retrospective study of all extremely premature infants admitted to a tertiary unit from 2016 to 2018. RESULTS: A total of 203 extremely premature infants were included in this study. The rate of BPD was significantly higher in infants with early exposure to ibuprofen (42.5%) compared to infants with no exposure (21.6%, P = 0.001). After adjusting for covariates, the risk of BPD was associated independently with ibuprofen exposure (odds ratios (OR) 2.296, 95% confidence interval (CI): 1.166-4.522, p = 0.016). Further analysis showed a trend towards higher risk of BPD in infants with successful patent ductus arteriosus (PDA) closure after ibuprofen treatment (32.3%) compared to non-treated infants (20.2%, p = 0.162). CONCLUSION: Our findings suggest that ibuprofen exposure may contribute to the occurrence of BPD in extremely preterm infants