22 research outputs found

    A quantitative analysis of attitudes and behaviours concerning sustainable parasite control practices from Scottish sheep farmers

    Get PDF
    Nematode control in sheep, by strategic use of anthelmintics, is threatened by the emergence of roundworms populations that are resistant to one or more of the currently available drugs. In response to growing concerns of Anthelmintic Resistance (AR) development in UK sheep flocks, the Sustainable Control of Parasites in Sheep (SCOPS) initiative was set up in 2003 in order to promote practical guidelines for producers and advisors. To facilitate the uptake of ‘best practice’ approaches to nematode management, a comprehensive understanding of the various factors influencing sheep farmers’ adoption of the SCOPS principles is required. A telephone survey of 400 Scottish sheep farmers was conducted to elicit attitudes regarding roundworm control, AR and ‘best practice’ recommendations. A quantitative statistical analysis approach using structural equation modelling was chosen to test the relationships between both observed and latent variables relating to general roundworm control beliefs. A model framework was developed to test the influence of socio-psychological factors on the uptake of sustainable (SCOPS) and known unsustainable (AR selective) roundworm control practices. The analysis identified eleven factors with significant influences on the adoption of SCOPS recommended practices and AR selective practices. Two models established a good fit with the observed data with each model explaining 54% and 47% of the variance in SCOPS and AR selective behaviours, respectively. The key influences toward the adoption of best practice parasite management, as well as demonstrating negative influences on employing AR selective practices were farmer’s base line understanding about roundworm control and confirmation about lack of anthelmintic efficacy in a flock. The findings suggest that improving farmers’ acceptance and uptake of diagnostic testing and improving underlying knowledge and awareness about nematode control may influence adoption of best practice behaviour

    The prevalence and control of lungworms of pastoral ruminants in Iran:The prevalence and control of lungworms of pastoral rumi-nants in Iran

    Get PDF
    Lungworms of the genera Dictyocaulus, Muellerius, Protostrongylus, and Cystocaulus are common helminths of domestic and wild ruminants with substantial veterinary and economic importance. Several studies have assessed the presence and prevalence of lungworm infections in ruminants in Iran. This report compiles the available scientific information about the occurrence of lungworms in domestic and wild ruminants in Iran between 1931 and June 2022 to give an insight into their epidemiology, and where possible to describe drug treatment efficacy. For this purpose, national and international scientific databases were searched. Overall, 54 publications comprising 33 articles in peer-reviewed journals, 8 conference papers, and 13 dissertations were evaluated regarding prevalence data; and an additional 4 peer-reviewed articles were evaluated regarding drug efficacy. Seven species of lungworms, namely Dictyocaulus filaria, Dictyocaulus viviparus, Dictyocaulus eckerti, Protostrongylus rufescens, Protostrongylus raillietti, Muellerius capillaris, and Cystocaulus ocreatus have been recorded from different ruminant hosts in Iran. Thirty-three studies conducted on small ruminant (sheep and goat) lungworms reported prevalences of lungworm infection of 11.6%, 45.81% and 66.29% using abattoir meat inspection, Baermann technique and fecal flotation, respectively. Eight studies conducted on large ruminants (cattle and water buffalo) reported prevalences of infection of 14.83%, 13.98% and 5% using abattoir meat inspection, the Baermann technique and fecal flotation, respectively. The prevalence of infection in wild ruminants was variable across examined species; 38% in urial, 37% in wild goats, 5% in goitered gazelles and 67% in red deer, in addition to a single case report in roe deer. There are few contemporary studies assessing the efficacy of currently available broad-spectrum anthelmintic compounds against lungworms in Iran. The high prevalence of multiple lungworm species in Iran, combined with a lack of information about drug efficacy, supports the need to improve the understanding of these important nematode parasites and inform the development of sustainable control strategies. The aim of this review and meta-analysis is to provide a baseline for future conventional parasitology and next generation molecular epidemiological studies of lungworm infection in pastoral ruminants in Iran

    Molecular confirmation of Dicrocoelium dendriticum in the Himalayan ranges of Pakistan

    Get PDF
    Lancet liver flukes of the genus Dicrocoelium (Trematoda: Digenea) are recognised parasites of domestic and wild herbivores. The aim of the present study was to confirm the species identity of Dicrocoeliid flukes collected from the Chitral valley in the Himalayan ranges of Pakistan. The morphology of 48 flukes belonging to eight host populations was examined; but overlapping traits prevented accurate species designation. Phylogenetic comparison of published D. dendriticum ribosomal cistron DNA, and cytochrome oxidase-1 (COX-1) mitochondrial DNA sequences with those from D. chinensis was performed to assess within and between species variation and re-affirm the use of species-specific single nucleotide polymorphism markers. PCR and sequencing of 34 corresponding fragments of ribosomal DNA and 14 corresponding fragments of mitochondrial DNA from the Chitral valley flukes, revealed 10 and 4 unique haplotypes, respectively. These confirmed for the first time the molecular species identity of Pakistani lancet liver flukes as D. dendriticum. This work provides a preliminary illustration of a phylogenetic approach that could be developed to study the ecology, biological diversity, and epidemiology of Dicrocoeliid lancet flukes when they are identified in new settings.•First molecular confirmation of Dicrocoelium dendriticum in Himalayan Pakistan.•Use of ribosomal and mitochondrial DNA phylogenetic markers.•Demonstration of the complementary value of morphological and molecular speciation methods for Dicrocoeliid flukes

    Determining the influence of socio-psychological factors on the adoption of individual 'best practice' parasite control behaviours from Scottish sheep farmers

    Get PDF
    Since 2003, the Sustainable Control Of Parasites in Sheep (SCOPS) group have provided the UK sheep farming industry with guidance on ways to mitigate the development and dissemination of anthelmintic resistance (AR). However our empirical understanding of sheep farmers’ influences towards such ‘best practice’ parasite control approaches is limited, and therefore requires further assessment and evaluation to identify the potential factors influencing their implementation. In 2015, a telephone questionnaire was conducted in order to elicit Scottish sheep farmers’ attitudes and behaviours regarding the SCOPS recommended practices, as well as gauging farmers’ general attitudes to gastrointestinal nematodes (GIN; term roundworm used in questionnaire) control. A quantitative structural equation modelling (SEM) approach was employed to determine the influences of socio-psychological factors and the uptake of individual anthelmintic resistance mitigating practices including: the implementation of a quarantine strategy for parasite control and the use of parasite diagnostic testing for monitoring faecal egg counts (FEC) and detecting AR. The proposed models established a good fit with the observed data and explained 61%, 54% and 27% of the variance in the adoption of AR testing, FEC monitoring, and quarantine behaviours respectively. The results presented highlight a number of consistent and distinct factors significantly influencing the implementation of selected SCOPS recommended practices. The negative influences of topography and farmer experience was frequently demonstrated in relation to multiple GIN control practices, as well as the positive influences of social norms, worm control knowledge, AR risk perception and positive attitudes to the services provided by the veterinary profession. Factors that were shown to have the greatest relative effects on individual parasite control practices included: the perceived expectation of others (i.e. Social norms) for implementing a quarantine strategy, farmer’s suspicions to the presence of AR on the holding for instigating AR testing and the confirmation of AR for adopting FEC monitoring. Determining the influences of behaviour-specific factors on farmers’ decision making processes will help to identify and address positive and negative influences concerning implementation of AR mitigating practices, as well as contribute to the development of more evidence based intervention strategies in the future

    The confounding effects of high genetic diversity on the determination and interpretation of differential gene expression analysis in the parasitic nematode Haemonchus contortus

    Get PDF
    Differential expression analysis between parasitic nematode strains is commonly used to implicate candidate genes in anthelmintic resistance or other biological functions. We have tested the hypothesis that the high genetic diversity of an organism such as Haemonchus contortus could complicate such analyses. First, we investigated the extent to which sequence polymorphism affects the reliability of differential expression analysis between the genetically divergent H. contortus strains MHco3(ISE), MHco4(WRS) and MHco10(CAVR). Using triplicates of 20 adult female worms from each population isolated under parallel experimental conditions, we found that high rates of sequence polymorphism in RNAseq reads were associated with lower efficiency read mapping to gene models under default TopHat2 parameters, leading to biased estimates of inter-strain differential expression. We then showed it is possible to largely compensate for this bias by optimising the read mapping single nucleotide polymorphism (SNP) allowance and filtering out genes with particularly high single nucleotide polymorphism rates. Once the sequence polymorphism biases were removed, we then assessed the genuine transcriptional diversity between the strains, finding ≥824 differentially expressed genes across all three pairwise strain comparisons. This high level of inter-strain transcriptional diversity not only suggests substantive inter-strain phenotypic variation but also highlights the difficulty in reliably associating differential expression of specific genes with phenotypic differences. To provide a practical example, we analysed two gene families of potential relevance to ivermectin drug resistance; the ABC transporters and the ligand-gated ion channels (LGICs). Over half of genes identified as differentially expressed using default TopHat2 parameters were shown to be an artifact of sequence polymorphism differences. This work illustrates the need to account for sequence polymorphism in differential expression analysis. It also demonstrates that a large number of genuine transcriptional differences can occur between H. contortus strains and these must be considered before associating the differential expression of specific genes with phenotypic differences between strains

    Evaluation of the performance of five diagnostic tests for Fasciola hepatica infection in naturally infected cattle using a Bayesian no gold standard approach

    Get PDF
    The clinical and economic importance of fasciolosis has been recognised for centuries, yet diagnostic tests available for cattle are far from perfect. Test evaluation has mainly been carried out using gold standard approaches or under experimental settings, the limitations of which are well known. In this study, a Bayesian no gold standard approach was used to estimate the diagnostic sensitivity and specificity of five tests for fasciolosis in cattle. These included detailed liver necropsy including gall bladder egg count, faecal egg counting, a commercially available copro-antigen ELISA, an in-house serum excretory/secretory antibody ELISA and routine abattoir liver inspection. In total 619 cattle slaughtered at one of Scotland’s biggest abattoirs were sampled, during three sampling periods spanning summer 2013, winter 2014 and autumn 2014. Test sensitivities and specificities were estimated using an extension of the Hui Walter no gold standard model, where estimates were allowed to vary between seasons if tests were a priori believed to perform differently for any reason. The results of this analysis provide novel information on the performance of these tests in a naturally infected cattle population and at different times of the year where different levels of acute or chronic infection are expected. Accurate estimates of sensitivity and specificity will allow for routine abattoir liver inspection to be used as a tool for monitoring the epidemiology of F. hepatica as well as evaluating herd health planning. Furthermore, the results provide evidence to suggest that the copro-antigen ELISA does not cross-react with Calicophoron daubneyi rumen fluke parasites, while the serum antibody ELISA does

    The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery

    Get PDF
    <p>Background: The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans.</p> <p>Results: Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates.</p> <p>Conclusions: The H. contortus genome and transcriptome provides an essential platform for postgenomic research in this and other important strongylid parasites. </p&gt

    A method for single pair mating in an obligate parasitic nematode

    Get PDF
    Parasitic nematode species have extremely high levels of genetic diversity, presenting a number of experimental challenges for genomic and genetic work. Consequently, there is a need to develop inbred laboratory strains with reduced levels of polymorphism. The most efficient approach to inbred line development is single pair mating, but this is challenging for obligate parasites where the adult sexual reproductive stages are inside the host, and thus difficult to experimentally manipulate. This paper describes a successful approach to single pair mating of a parasitic nematode, Haemonchus contortus. The method allows for polyandrous mating behaviour and involves the surgical transplantation of a single adult male worm with multiple immature adult females directly into the sheep abomasum. We used a panel of microsatellite markers to monitor and validate the single pair mating crosses and to ensure that the genotypes of progeny and subsequent filial generations were consistent with those expected from a mating between a single female parent of known genotype and a single male parent of unknown genotype. We have established two inbred lines that both show a significant overall reduction in genetic diversity based on microsatellite genotyping and genome-wide single nucleotide polymorphism. There was an approximately 50% reduction in heterozygous SNP sites across the genome in the MHco3.N1 line compared with the MoHco3(ISE) parental strain. The MHco3.N1 inbred line has subsequently been used to provide DNA template for whole genome sequencing of H. contortus. This work provides proof of concept and methodologies for forward genetic analysis of obligate parasitic nematodes
    corecore