3,980 research outputs found

    Infrared Astronomical Satellite (IRAS) analysis of the transmittance of off-axis energy due to scattering and diffraction

    Get PDF
    Stray light transmittance is analyzed. Mathematical models are evaluated. The results of scatter and diffraction are considered separately, and the combined transmittance values evaluated

    Falloff of the Weyl scalars in binary black hole spacetimes

    Full text link
    The peeling theorem of general relativity predicts that the Weyl curvature scalars Psi_n (n=0...4), when constructed from a suitable null tetrad in an asymptotically flat spacetime, fall off asymptotically as r^(n-5) along outgoing radial null geodesics. This leads to the interpretation of Psi_4 as outgoing gravitational radiation at large distances from the source. We have performed numerical simulations in full general relativity of a binary black hole inspiral and merger, and have computed the Weyl scalars in the standard tetrad used in numerical relativity. In contrast with previous results, we observe that all the Weyl scalars fall off according to the predictions of the theorem.Comment: 7 pages, 3 figures, published versio

    Fluctuations relations for semiclassical single-mode laser

    Full text link
    Over last decades, the study of laser fluctuations has shown that laser theory may be regarded as a prototypical example of a nonlinear nonequilibrium problem. The present paper discusses the fluctuation relations, recently derived in nonequilibrium statistical mechanics, in the context of the semiclassical laser theory.Comment: 11 pages, 3 figure

    One dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibre

    Full text link
    A quantum chain model of many molecule motors is proposed as a mathematical physics theory on the microscopic modeling of classical force-velocity relation and tension transients of muscle fibre. We proposed quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibre which has no empirical relation yet, it is much more complicate than hyperbolic relation. Using the same Hamiltonian, we predicted the mathematical force-velocity relation when the muscle is stimulated by alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency has a physical understanding by Doppler effect in this quantum chain model. Further more, we apply quantum physics phenomena to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transients curves found their correspondence in the theoretical output of quantum two-level and three-level model. Mathematically modeling electric stimulus as photons exciting a quantum three-level particle reproduced most tension transient curves of water bug Lethocerus Maximus.Comment: 16 pages, 12 figures, Arguments are adde

    Estimating factor models for multivariate volatilities : an innovation expansion method

    Get PDF
    We introduce an innovation expansion method for estimation of factor models for conditional variance (volatility) of a multivariate time series. We estimate the factor loading space and the number of factors by a stepwise optimization algorithm on expanding the "white noise space". Simulation and a real data example are given for illustration

    Doing more with less: Teacher professional learning communities in resource-constrained primary schools in rural China.

    Get PDF
    Teacher professional learning communities provide environments in which teachers engage in regular research and collaboration. They have been found effective as a means for connecting professional learning to the day-to-day realities faced by teachers in the classroom. In this article, the authors draw on survey data collected in primary schools serving 71 villages in rural Gansu Province as well as transcripts from in-depth interviews with 30 teachers. Findings indicate that professional learning communities penetrate to some of China’s most resource-constrained schools but that their nature and development are shaped by institutional supports, principal leadership, and teachers’ own initiative

    A Search for Ultraviolet Emission from LINERs

    Get PDF
    We have obtained Hubble Space Telescope WFPC2 2200 A and optical V-band images of 20 low-luminosity active galactic nuclei, most of which are spectroscopically classified as LINERs, in order to search for a possible photoionizing continuum. Six (30%) of the galaxies are detected in the UV. Two of the detected galaxies (NGC 3642 and NGC 4203) have compact, unresolved nuclear UV sources, while the remaining four UV sources (in NGC 4569, NGC 5005, NGC 6500, and NGC 7743) are spatially extended. Combining our sample with that of Maoz et al. (1995), we find that the probability of detection of a nuclear UV source is greatest for galaxies having low internal reddening and low inclination, and we conclude that dust obscuration is the dominant factor determining whether or not a UV source is detected. Large emission-line equivalent widths and the presence of broad-line emission also increase the likelihood of detection of nuclear UV emission. Our results suggest that the majority of LINERs harbor obscured nuclear UV sources, which may be either accretion-powered active nuclei or young star clusters. Under the assumption that the compact UV sources in NGC 3642 and NGC 4203 have nonstellar power-law spectra extending into the extreme ultraviolet, the extrapolated ionizing fluxes are sufficiently strong to photoionize the narrow-line regions of these objects. The V-band images of many galaxies in our sample reveal remarkably strong dust lanes which may be responsible for obscuring some UV sources.Comment: 25 pages, 4 figures, 3 tables, LaTeX, AASTeX v4.0 style file, accepted for publication in The Astrophysical Journal, additional figures available at http://astro.berkeley.edu/~barth/papers/u

    A model for the infrared-radio correlation of main-sequence galaxies at GHz frequencies and its dependence on redshift and stellar mass

    Full text link
    The infrared-radio correlation (IRRC) of star-forming galaxies can be used to estimate their star formation rate (SFR) based on the radio continuum luminosity at MHz-GHz frequencies. For application in future deep radio surveys, it is crucial to know whether the IRRC persists at high redshift z. Delvecchio et al. (2020) observed that the 1.4 GHz IRRC correlation of star-forming galaxies is nearly z-invariant up to z~4, but depends strongly on the stellar mass M_star. This should be taken into account for SFR calibrations based on radio luminosity. To understand the physical cause of the M_star-dependence of the IRRC and its properties at higher z, we construct a phenomenological model for galactic radio emission involving magnetic fields generated by a small-scale dynamo, a steady-state cosmic ray population, as well as observed scaling relations that reduce the number of free parameters. The best agreement between the model and the characteristics of the IRRC observed by Delvecchio et al. (2020) is found when the efficiency of the SN-driven turbulence is 5 % and when saturation of the small-scale dynamo occurs once 10 % of the kinetic energy is converted into magnetic energy. The observed dependence of the IRRC on M_star and z can be reproduced with our model. For galaxies with intermediate to high (M_star ~ 10^9.5 - 10^11 M_sun) stellar masses, our model results in a IRRC which is nearly independent of z. For galaxies with lower masses (M_star ~ 10^8.5 M_sun), we find that the IR-to-radio flux ratio increases with increasing redshift. This matches the observational data in that mass bin which, however, only extends to z~1.5. The increase of the IR-to-radio flux ratio for low-mass galaxies at z>1.5 that is predicted by our model could be tested with future deep radio observations.Comment: 18 pages, 17 figures, submitted to A&

    Is there consensus in defining childhood cerebral visual impairment? A systematic review of terminology and definitions

    Get PDF
    The childhood condition of visual difficulties caused by brain damage, commonly termed cortical or cerebral visual impairment (CVI), is well established but has no internationally accepted definition. Clarification of its core features is required to advance research and clinical practice. This systematic review aimed to identify the definitions of childhood CVI in the original scientific literature to describe and critically appraise a consensual definition of the condition. MEDLINE, EMBASE, PsychINFO, CINAHL and AMED databases were searched in January 2017. Studies were included if they (1) were published original research, (2) contained a childhood CVI sample, (3) contained a definition of CVI and (4) described their CVI identification/diagnostic method. Thematic analysis identified concepts within definitions and narrative synthesis was conducted. Of 1150 articles, 51 met inclusion criteria. Definitions were subdivided according to detail (descriptive definition, description not reaching definition status and diagnostic/operationalising criteria). Three themes concerning visual deficits, eye health and brain integrity were identified (each containing subthemes) and analysed individually across definitions. The most common themes were ‘visual impairment’ (n=20), ‘retrochiasmatic pathway damage’(n=13) and ‘normal/near normal eye health’ (n=15). The most consensual definition identified here may not be the best quality for advancing our understanding of CVI. We argue for the alternative definition: CVI is a verifiable visual dysfunction which cannot be attributed to disorders of the anterior visual pathways or any potentially co-occurring ocular impairment. We propose reporting guidelines to permit comparison across studies and increase the evidence base for more reliable clinical assessment and diagnosis
    corecore