NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

BREAULT RESEARCH ORGANIZATION
 6012 E 27 Street Tucson, Arizona 85711

Errata No 1, Sept 21, 1975
for: Infcared Astronumical Satellite (IRAS)
Analysis of the Transmittance of Off-axis Energy Due to Scattering and Diffraction

Page 10 , Section 2.1.1 First paragraph: change date to data.
Page 59, Equation 14. Adr^{\prime} : for $\mathrm{n}<\mathrm{m}$
Page 60, Equation 16 , first part: Add for $n<m$.
Equation 16 , change to:

$$
=\left|\sum_{n=1}^{N} A_{n}\right|^{2}
$$

Page 63, Fourth line: Change to read as follows:
as a ficticious unit area surface normal to the incoming or outpage 67, Paragraph 6.4.1 line 8 , change to read as follows:
too cumbersome in the analysis of the fine-scale diffraction
from the struts

Page 90 , rirst line. Change $\theta=0$, to read $\theta_{i} \neq 0$
Page 92 , Equation 74. Change to:

$$
\begin{equation*}
\phi=\cos ^{-1}\left\{\operatorname{tanw} \cdot \tan \left(\phi_{\mathrm{i}} / 2\right)\right\} \tag{74}
\end{equation*}
$$

Page 100 , 5% Diffuse at 88° : change from $3.5 \mathrm{E}-11$ to $1.5 \mathrm{E}-11$
Corresponding percentages now are: © Diffraction 99. \%Scatter 1.

BREAULT RESEARCH ORGANIZATION
 6012 E 27 Street Tucson, Arizona 85711

Errata No 1, Sept 21, 1976
for: Infeared Astronumical Satellite (IRAS)
Analysis of the Transmittance of Off-axis Energy Due to Scattering and Diffraction

Page 10, Section 2.1.1 First paragraph: change date to data.
Page 59, Equation 14. Adr': for $n<m$
Page 60, Equation 16 , first part: Add for $n<m$.
Equation 16, change to:

$$
=\left|\sum_{n=1}^{N} A_{n}\right|^{2}
$$

Page 63, Fourth line: Change to read as follows:
as a ficticious unit area surface normal to the incoming or outpage 67, Paragraph 6.4.1 line 8 , change to read as follows:
too cumbersome in the analysis f f the fine-scale diffraction
from the struts

Page 90 , rirst line. Change $\theta=0$, to read $\theta_{i} \neq 0$
Page 92, Equation 74. Change to:

$$
\begin{equation*}
\phi=\cos ^{-1}\left\{\tan w \cdot \tan \left(t_{i} / 2\right)\right\} \tag{74}
\end{equation*}
$$

Page 100 , 5% Diffuse at 88° : change from 3.5E-11 to $1.5 \mathrm{E}-11$
Corresponding percentages now are: \% Diffraction 99. : Scatter 1.

Page 102, Second line. Change Diffuse to 5% Diffuse $5{ }^{\circ}$ diffuse at 24°; clange from 9.5E-4 to 9.5E 5 . Corresponding Percentages now are $\%$ diffraction 1 . \% scatter 99.
5° diffuse at 30°, change from $9.8 \mathrm{E}-5$ to $9.8 \mathrm{E}-6$
The total now becomes 1.OE-5 instead of 9.8E-5
Corresponding percentages now are: \% ciffraction 4.
\% scatter 96.
Second line from bottom, change Diffuse to Diffraction
Page 104, 5% diffuse at 30° : change from 1.1E-5 to 9.8E-6
Corresponding percentages now are: \% dffaction 9 .
$\%$ scatter 91.
Page 102, Sccond summation with Martin Black at 88°
Change from $1.8 \mathrm{E}-13$ to $1.4 \mathrm{E}-8$
Page B-10 Change line 15 to:
$(x, y)=(0 \pm R)$.
Page B-11 Change asymptotec to asymptotic.
Page B-13 First equation (the one before B-46). The third exponential texin in the brackets should have a minus (-) in the exponent:
$+e^{-i k \beta_{i} S / \sqrt{2}}$

TABLE OF CONTENTS

Paragraph Titie Page
1.0 INTRODUCTION 1
2.0 ANALYSIS OF OPTICAL SUBSYSTEM(OSS) 10
2.1 COM:ARISON WITH PERKIN-ELMER'S ANALYSIS 10
3.0 SUNSHIELD ANALYSIS 31
4.0 - field mask and lenses 35
5.0 ANALYSIS OF THE FLIGHT DESIGN 37
5.1 SYSTEM MODEL 38
5.2 SCATTERED LIGHT ANALYSIS . 4 - . 9॥ BAND 38
5.3 SCATTERED LIGHT ANALYSIS $\|_{\mu}$ BAND 43
5.4 SUMMARY OF THE SCATTERED LIGHT ANALYSIS AND RECOMMENDATIONS 46
6.0 DIFFRACTION 53
6.1 INTRODUCTION 53
6.2 THEORY 54
6.3 THE PADE COMPUTER PROGRAM 62
6.4 COMPUTER ANALYSIS OF IRAS 67
6.5 ANALYTICAL RESULTS FOR STRUTS 84
6.6 CONCLUSIONS AND RECOMMENDATIONS 92
7.0 COMBINED SCATTER AND DIFFRACTION RESULTS 94
7.1 DIFFRACTED, THEN SCATTERED RADIATION 94
8.0 SUMMARY AND CONCLUSIONS 105
REFERENCES 108

TABLE OF CONTENTS, Cont.

APPENDIX A: SURFACE SCATTER MODELS A-1
APPENDIX B: COMPARISON OF BOUNDARY WAVE AND STATIONARY PHASE RESULTS WITH CLASSICAL DIFFRACTION SOLUTIONS B-1
APPENDIX C: APART, A FIRST-ORDER DETERMINISTIC STRAY RADIATION ANALYSIS PROGRAM C-1

Figures

1. IRAS Surfaces Modeled Into Space One (Object Space) 5
2. Objects Modeled In Space 2 (Between Primary and Secondary) 6
3. Objects Modeled In Space 3 (Image Space) 7
4. IRAS Baffle Design (Units Meters), PE Data 11
5. Model Used for APART Program Calculations, PE Data 12
6. Input Data Listing from Perkin-Elner's Analysis 13
7. . 4 to . 9 Micron Performance without the Field Mask 17
8. Visible First-order Scatter, PE Data 18
9. Illumination of the Front Sections of the Inner-secondary Baffle 19
10. Strut and Sunshield Orlentation of the IRAS System 22
11. Model of IRAS Used in the APART Calculations with Vanes and Profile of Sunshade 23
12. $A(0)$ for $8-15 \mu$ Band of OSS 25
13. First-order Scatter (5% Diffuse Reflectance on Baffles) 27
14. Hemispherical Diffuse Measurements as a function of λ 29
15. Martin's Data on Martin Black for Long Wavelength 30
16. Rays into Specular Sunshield 32
17. Measured Performance of the Sunshield Model 34
18. View from the Detector Through the Field Mask and Optics 36
19. Paths from the Secondary Baffle to the Image 42
20a. A(0) for Martin Elack and 5\% Coatings in the 0.4-0.9.9 Band 44
20b. A(θ) for oSS in the 11μ Band 48
20c. $\lambda(\theta)$ for OSS in the 22μ Band 49
20d. A(θ) for OSS in the 65μ Band 50
20e. A(0) for OSS in the 100 H Band 51

Flgures, Cont.

21. Typical Geometry for Oiffraction Integral 54
22. Regions of Integration in Boundary-wave Formulation 56
23. Vector Definitions for Stationary Phase Approximation to the Boundary Wave integral 58
24. Sectioned Diffracting Edge 62
25. Local Spherical Coordinate System for Edge Segment 63
26. Sectioned 1 mage Plane 68
27. Diffracting Edges Used in IRAS Analysis (3-D view) 69
28. Diffracting Edges Used in 1 RAS Analysis (Meridonal Plane) 70
29. Definition of Azimuthal Angle 71
30. Attenuation Factor vs. Off-axis Angle for $\lambda=102.5 \mu$ 73
31. Attenuation Factor vs. Off-axis Angle for $\lambda=64.5 \mu$ 79
32. Attenuation Factor vs. Off-axis Angle for $\lambda=22.5 \mu$ 80
33. Attenuation Factor vs. Off-axis Angle for $\lambda=11.5 \mu$ 81
34. Attenuation Factor vs. Off-axis Angle for $\lambda=6.5 \mu$ 82
35. Comparison of PADE, GUERAP 11 and Perkin-Elmer's Calculations 83
36. Usual Fraunhofer Diffraction Geometry 84
37. Real Space 85
38. Direction Cosine Space 85
39. The Two Different Obliquity Factors 87
40. Transmission Function for Rectangular Slit 88
41. Diffraction Spikes in Direction Cosine Space 89
42. Definition of System Off-axis and Azimuth Angles 89

Figures, Cont.
43. Coordinate System Rotation 91
44. Apodization with Serrated Edges 93
45. $0.4-0.9 \mu$ Band Scatter and Diffraction Combined 95
46. $8-15 \mu$ Band Scatter and D:ffraction Comblned 97
47. 15-30 Band Scatter and Difiraction Combined 99
48. 48 - $8 i \mu$ Band Scatter and Diffrartion Combined 101
49. 87 - 11μ Band Scatter and Diffraction Combined 103
50. The More Cyllndrical Secondary Baffle 106
Al. Illustration of the Importance of the Coordinate System within Which the Scattering Process is Discussed A-2
A2. Geometrical Configuration of Two Principal Planes in Which the Scattered Light Field Was Sampled A-3
A3. BRDF of the Mirrors Used by APART A-4
A4. BRDF at Visible Wavelengths as Arrived at by PE Scaling Law and λ^{-2} Scaling Law A-6
A5. Diagram lllustrating the Efrects of the Wavelength Scaling Law A-8
A6. Roll-off Region Shifted to Larger Angles when Wavelength is Larger A-9
A7. University of Arizona 10.6μ Measurements of Martin Black A-11
A8. Martin Black BRDF Data, Helium-Neon $6328^{\circ}{ }^{\circ}$ A- 12
A9. Three-dimensional BRDF Model for Martin Black A-13
AiO. BRDF of Martin Black Model A-15
B1. Polar Coordinate System for Semi-infinite Plane B-1
B2. Comparison of Fresnel-Kirchhoff and Boundary-wave Obliquity Factors 8-3
B3. Rotationally Symmetric Geometry for the Circular Aperture B-4

Figures, Cont.

B4. Comparison of fresnel-Kirchhoff and Rayleigh.Sommerfeld
Obliquity factors B-6
B5. Obliquely 11 liminated Rectangular Aperture B-8
B6. Obliquely llluminated Circular Aperture B-9
87. Approximation to the First-order Bessel Function B-11

B8. Obliquely Illuminated Diamond Aperture B-12

TABLES

1. Description of Objects used in APART 8
2. \% Power Contributions to Image for Visible Wavelengths and 5\% D!ffuse 14
3. \% Power to Image for Visible Wavelengths and Martin Black Coating 16
4. Power Contribution Table (10.6 Microns 5\% Coating) $2!$
5. Power Contribution Table (10.6 Microns Martin Black) 2.4
6. Data from Measurements on a Sample Sunshade 35
7. \% Table for . 4..9 Band with 5\% Diffuse for Flight System 40
8. \% Table for .4-.9 Band with Martin Black for Flight System 41
9. \& Pcwer Contribution to image for Fligist System, Mertin Blact 11.0 BRDF Data 47
10. Diffraction Contributions for $20^{\circ} \mathrm{Azimuth}$ 74
11. Diffiactior Contributions for 90° Azimuth 75
12. Diffraction Contributions for 180° Azimuth 76
13. $0.4-0.9 \mu$ Band Scatter and Diffraction 96
14. $8-15 \mu$ Band Scatter and Diffraction 98
15. 15-30 μ Band Scatter and Diffraction 100
16. 48-81 μ Band Scatter and Diffraction 102
17. 87-118 μ Band Scatter and Diffraction 104

1.0 INTROCDETION

This report contalns the results of stray-light transmittance analysis on Perkin-Elmer's design of the Infrared Astronomical Satellite (IRAS), design number 693-10000, Revision E, dated May 9, 1978. The system was evaluated for scattered radiation propagation with the use of the APART (Arizona's Paraxial Analysis of Radiation Transfer, version 6), and the propagation of diffracted energy with both PADE (Paraxial Analysis of Diffracted Energy) and Perkin-Elmer's GUERAP II programs. The results of scatter and diffraction are first presented separately, with the combined transmittance values being presented later.

The scattered radiation amalysis was performed by using both a 5% diffuse black on all the baffir and vane surfaces and by using a mathematical model of the Martin Black scattering characteristics. The results of the IR scattered-radiation analysis show that the majority of radiation comes from the inner-secondary baffle and the object side of the aperture stop. In the visible wavelengths, the primary and secondary mirrors are the dominant sources of unwanted radiation at all off-axis angles.

For all wavelengths, diffraction effects are dominant only at the large off-axis angles, except for a few specific cases at smaller angles. This is somewhat contrary to popular opinion which holds that at the long wavelengths diffraction effects will predominate. This report clearly shows that at the longer wavelengths the diffraction contributions go up significantly; however, surface-scattering characteristics are also larger, resulting in more unwanted energy reaching the image plane due to scattered radiation. It is the comparative increase which determines which propagation process predominates.

The following tasks were outlined in the Statement of Work: ${ }^{\prime}$

1. Perform an Indenendent analysis of the off-axis rejection of the IRAS Telescope System (including sunshade, optical subsystem, and fleld optics) considering the effects of both scattering and diffraction over the operating wavelength range of the telescope. The telescope design analyzed shall represent the flight design to the maximum extent possible. The optical subsystem. is defined to include the telescope optics, structure, and baffles. The requirements for off-axis rejection shall be as defined in Specification 2-26412 "Performance Requirements for an Infrared Telescope System for the Infrared Astronomical Satellite (IRAS)" Revision 5, dated September 15, 1977 or the latest modification thereto. The analysis shall include but not be limited to the following elements:
(a) Computation of the off-axis rejection of the optical subsystem by itself for direct comparison with the Perkin-Elmer arizlysis.
(b) Computation of the azimuthal variation of diffraction of the telescope for comparison as in (a) above.
(c) Computation of the effects of the field optics including both the cavity behind the field lens and the aperture that preceeds the detector cavity.
(d) Computation of the system off-axis performance at 632.8 nm and 10.4 nm .

The analysis in each task shows, in most cases, good agreement with Perkin-Elmer's original analysis, even though the systems analyzed were slightly different.

The specular sunshleld effectively blocks of the solar radiation for off-axis angles greater than $6 n^{\circ}$. However, because of its specular coating, it may collect and reflect unwanted radiation from near offaxis sources into the system. The field masks and lonses in the final flight system will alter the propagation peths to the individual detectors. In all cases this will result in better off-axis rejection. For a few off-axis positions, the masks will provide the cructal reduction required to meet the specificiaions.

The stray light requirements used in this analysis are those defined In Specification 2-26412, which are repeated here:

$$
\begin{aligned}
& \text { 3.2.2.3 Stray Light Rejection } \\
& \text { The Telescope System stray light rejection require- } \\
& \text { ments are defined as follows: } \\
& \text { a. Let } P(\theta) \text { be the power (watts) from an } \\
& \text { unwanted point source detected when the } \\
& \text { Telescope System's line of sight is } \\
& \text { displaced an angle } 0 \text { from the point source. } \\
& P(0=0)=P(0) \text { is then the power that } \\
& \text { could be detected if the point source } \\
& \text { were imaged directly on the detector. } \\
& \text { b. The normalized off-axis attenuation } \mathcal{A}(\theta) \\
& \text { is defined as } \\
& A(0)=\frac{1}{\Omega} \frac{P(0)}{P(0)} s r^{-1} \\
& \text { where ? is the solid angle (sr) subtended } \\
& \text { by the detector. The Telescope System shall } \\
& \text { have a normalized off-axis attenuation equal } \\
& \text { to or less than the values of } A(\theta) \text { tabulated } \\
& \text { below in Table 3.2.2.3. }
\end{aligned}
$$

Table 3.2.2.3
REQUIRED A(0) sr^{-1}
Spectral Band ($\mu \mathrm{m}$)

| 0 | $0.4-0.9$ | $8-15$ | $15-30$ | $48-81$ | $87-118$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5° | 1×10 | 7×10^{0} | 3×10^{-1} | 4×10^{-2} | 2×10^{-2} |
| 244° | 3×10^{-1} | 1×10^{-5} | 8×10^{-6} | 4×10^{-6} | 5×10^{-6} |
| 60° | 3×10^{-7} | 5×10^{-8} | 1×10^{-7} | 2×10^{-7} | 1×10^{-7} |
| 88° | 1×10^{-7} | 2×10^{-8} | 9×10^{-9} | 4×10^{-9} | 4×10^{-9} |

In any computerized stray-light analysis, the model of the system is very important, including the scattering characteristics of the surfaces. The surface elements that were used in this analysis are shown in Figs. I to 3. Figure 1 shows those elements that were modeled as existing in object space (space one). Table 1 describes each surface accordirg to the numbers that appear in the threc figures. Because of the nature of the APART program, the appropriate elements must be entered inco each space of the system. As can be seen in the three figures, the elements in eack space now not be the sane.

Elements numbered 5 and 6 are the sections of the primary baffle which have vanes. In APART, the locus of vane tips is entered as the "surface" of the element. This accounts for the odd shape of sections 5 and 6 relative to section 8 .

Section 8 has some localized vane structure to shield rivets along the barrel baffle seam that is not accounted for in the analysis. These structures are comparatively small and should not adversely affect the results.

Fig. 3. Objects Modeled in Space Three (Image Space).

Toble 1. Description of Objects Usod in APART.

Obiect \#	Description S	Sections
1	Elliptical tilted diffracting edge	1×5
2	Sliced at 31° conirat reflecting shield	5
3	Disk as radiators	4
4	Entrance port diffracting edge	1
5	front section of maln tube where first 5 vanes are 88.5 mm separation	5
6	Second front section of main tube where 8 vanes are spaced 14.2 mm apart	4
7	R1ght side of the last vane of object 6	2
8	Vancless side wall of the main baffle	5
9	Vane at right side of object 8	1
10	Small right side of oblect 9	1
11	Bafile extending from aperture stop backward	1
12	Left side of aperture stop vane	1
13	Diffracting aperture stop tip	1
14	Right side of aperture stop	1
15	Small cylinder extending from aperture stop to primary mirror	1
16	Cylindrical outside of secondary structure	1
17	Conical outside of the secondary baffle	1
18	Secondary baffle tip	1
19	Inside of secondary baffle	5
20	Small extension from secondary baffle toward secondary mirror	1
21	Back side of spider support	10×3
22	Outside of inner conical baffle	5×5
23	Inner obscuration vane at the primary mirror	1
24	Diffracting edge at tip of inner conical baffle	1
25	Diffracting edge at tip of inner conical baffle	1
26	Cylindrical end of inner conical	1
27	Middle part of the inner conical baffle	4
28	Cylindrical right end of inner conical baffle	2

Table 1. Description of Objects Used in APART, Cont.
Object \# Description Sections
2930
31 Image 5Image baffle2
32 Secondary mirror 4
33 Primary mirror 6
34 Not used 35
Primary mirror as used in space three 6

2.0 ANALYSIS OF THE OPTICAL SUBSYSTEM (OSS)

2.1 COMPARISON WITH PERKIN-ELHER'S ANALYSIS

2.1.1. The Visible Band. The analysis of the optical subsystem (OSS) was performed to permit a comparison with the Perkin-Elmer analysis as reported in PE Report No. 13616. Initial evaluation of this report and a listing of the input data decks revealed some conflicting informalion. Figures 1 and 2 from the report are reproduced here as Figs. 4 and 5. By observataion, one can see that the size of the inner-primary baffle near the primary is much too large and the aperture stop appears to be too small. A check of the data input listing, ${ }^{3}$ Fig. 6, shows that neither is the case. As was explained in the introduction, object 2 in the PE report should have the locus of the vane tips used as the "surface". The drawing is inconsister* with the actual (and correct) date input. The only error in PE's input data is the reference values of the marginal and chief rays for each of the spaces. The detailed effect of this error on the calculations is quite complicated; briefly, it will shift the location of the image of the objects.

Table 2 shows the percent of power contributed to the full detector area ($r=5.04 \mathrm{~cm}$) from each of the individual objects. The black coatings were assumed to be 5% Lambertian diffuse. Ths mirror coating had a BRDF of $1.75 E-1 \mathrm{sr}^{-1}$ at $\beta-\beta_{0}=.01$ with a β^{-1} falloff. This value is 100 times higher than the BRDF specified by PE for 10μ. However, PE later ${ }^{4}$ did specify a $\left(\lambda / \lambda_{0}\right)^{-2}$ scaling at $\lambda_{0}=10 \mu$. The mirror BRDF used is thus about 2.3 times lower than the appropriately scaled data. Subsequent analysis reported here will include the BRDF scaled according

PERKIN ELMERR
\therefore :cjort No. 13616

Fig. 4. IRAS Baffle Design (Units Meters), PE Data. ${ }^{5}$

Fig. 5. Model Used for APART Program Calculations, PE Data. ${ }^{6}$

```
41 dil or
Versidu sitsolutt
OHSECT ? - 10 -1.28b .3U9 1-1 . 3 -.01.1278H
OR, 位CT C \(110-0.3999 .3091-1\)
DiUJFCT \(1110-170.27 .731-1\)
nLJECI 1 I 10 - \(B 0.3847 .351-1\)
```



```
(1)Ntし1 \(3110=.05413 .3671-1\)
DHJECT \(4110=.05413 .301-1\)
OHJECI \(4110-054.3671-1\)
DAJECT \(513-0.3244 .05811\)
```



```
\(\begin{array}{lllllllll}\text { OHJECT } & 1 & 3 & -0.8644 & 059 & 1 & -1 & \text { Rear Part } \\ \text { OUJECT } & 6 & 1 & 3 & -.8244 & 0 . & 1 & -1 & \text { Stop Only. }\end{array}\)
OHJECT \(715-0.747 .05911\)
OMJECT 715 -. DHE6. 1116 1 1
OHJECT \(815-.399 \underline{9} .0572811\)
OHJECT H 150 O..100 11
OHJECT 9 1 \(5-.7474313\).05771 1-1
OMJECT 4 \(15-.5886 .10891-1\)
OHNECT JU1 3-.7474313 .0577111
OAJECT 10 1 3 3 -.7474313 0. 1 1
(0WJECP \(11110-.3499 .0 .062 \mathrm{C} 1-1\)
OHJECT 11 110 0. . \(0561-1\)
OBJECT \(1215.0266 .3101-1\)
(JPJECT 1? - 5 5 0. . 310 1-1 - 3 4.96E-4
OHJECT \(22-150 . .310-1\)-1 5 - 3 4.96E-4
OHJECT \(2215.0266 .310-1-1\)
OHJECT 3? 1 1U - \(1.245 .304-1-1\)
OHJECT \(32110-.3994 .304-1-1\)
OHJECT \(33110-.3999 .367-1-11\)
UAJECT \(33110-05413.367-1\)-1
UAJECT \(34110-.05413 .05-1-1\)
OUJECT \(34110-.054 .367-1-1\)
OMJEC1 \(3513=\) R244 . O5H - 11
OHJECT \(3513-0747.054-11\)
OYJECT 361.3 -.R244 .059 - 1 - 1
OUJECT 36 13 -.8244 0. -1 -1
nHJECT \(3715-.747 .054-11\)
Orateci \(3715-.5886\). 1116 - 11
OHJECT 3R \(15-.3949 .0572 H-11\)
OHJECT 3A \(150.0100-11\)
OMJECT \(3415-.7474313\). 05771 -1 -1
OHJECT 3915 -.S8R6 . 1049 -1 -1
OHJECT \(41110-03999.05628-1-1\)
OMJECT 41 110 n. .056-1 -1
URJECT 40 1 3 -. 7474313 .05771-1 1
UHJFCI \(40-13-.74743130 .-1 \quad 1\). O50856239 6.84H8B9E-3
```



```
OHJECT \(601.3-.7474313\) U. 11
OAJECT A2 \(110-1.285 .3091-1\)
OH.JECT Rで \(110-.3999 .30901-1\)
OHJECT 63 1 10-.3999.3071-1
ORIJECT 63 1 10 \(-0.05413 .3671-1\)
OHJECT \(64110-.05413 .301-1\)
UAJECT \(64 \quad 1 \quad 10-.054 \quad .367 \quad 1-1\)
OHJECT 6R \(15-.3999 .0572811\)
ORJECT GR I S n. . IOO 1 l
```

Fig. 6. Input Data Listing from Perkin-Elmer's Analysis.
Table 2. \% Power Contributions to Image for Visible Wavelengths and 5\% Diffuse.
cecichegecinchececenncincmincesuncte

 m
 Scattered Light Analysis of OSS For Ames Research Center hasa June 21, 1978

In the PE formula. In either case, the significant contributors are the Inner-secondary baffle, the primary, and the aperture stop.

A detalled critique of the design or an analysis for each off-axis position will be avoided here as this analysis is to compare results with those obtained by $P E$. Significant differences in the principal propagation paths will be highlighted. When the ilight version (OSS plus sunshicld, field optics, and masks) is evaluated, there will be greater detail so that the effects of suggested design changes will be readily recognized.

The above analysis, with a 5\% diffuse black coating, was repeated using a model of Martin Black as the surface scatterer. A brief description of the model is given in Appendix A. This model accounts for the higher forward scatter and lower back scaiier that is characteristic of Martin Black. The results with the Martin Black model (Table 3) show sone significant changes in the prepagation paths due to the above characteristics. The $A(0)$ values are plotted in Fig. 7 far both runs along with the specification for the 0.4 to 0.9μ bans.

A comparison of PE results (Fig. 8) with our analysis shows excellent agreemeat except for one data point at 10°. PE reports that the major contributor at this angle should be the inside of the secondary baffle. However, this was added as a separate hand calculation. 7 APART calcuiated the power focused onto the inner-secondary baffle; it then computed the radiation scattered forward toward the image of the detector as imaged by the secondary and also the energy backscattered to the primary and through the secondary before reaching the image. The area directly
Table 3. \% Power to Image for Visible Wavelengths and Martin Black Coating.

Pig. 7. 0.4 - 1.9 9 Performance without the Field Mask.

Fig. 8. Visible First-order Scatter, PE Data.
seen from the image did not recelve direct illumination, thus, the hand calculation appears to be in error.

Figure 9 is a very simplified drawing of the rays that can reach the secondary baffle. The main baffle tube blocks out all the radiation to the sections on the secondary baffle that can be seen directly.

Fig. 9. The Left Sections of the Secondary Baffle do not Receive Direct lllumination.

There is one last point to discuss in the comparative analysis of the visible band results. This APART analysis predicts the contributions from the front side and back side of the aperture stop is the reverse of that presented by PE. The magnitude of the power contributed also appears to be reversed. Only a small portion of the back surface can receive radiation compared to the entire front surface, which is seen directly. With Lambertian coatings, then, the front side must contribute more.
2.1.2. The $8-15 \mu \mid R$ Band. The OSS was evaluated for its off-axis rejection using a 5% l.anbertian diffuse coating. The mirror coating had
a BRDF of $1.75 \mathrm{E}-3$ at $\beta-\beta_{0}=.01$ with β^{-1} falloff. β_{0} is the sine of the angle of Incidence, while B is the sine of the angle from the surface normal to the observation point. Table 4 shows the contributions from each object. One can readlly see that the mirror scatter plays a secondary rold in the 1 . In this analysis, it is by definition (and generally accepted as a true statement) that mirror scatter goes down with increasing wavelength. Therefore, unless the BRDF of the black surfaces also decrease with wavelength, one should not expect significantly better offaxis rejection at the longer wavelengths.

The major contributors are the inner-secondary baffle, the aperture stop, and the inner-primary conical baffle. Note that the back side of the strut contributes only 5.6% of the total energy and that is only at one angle. The orientation of the struts is shown in Figs. 10 and 11. In particular, one of the struts is aligned with the peak of the sunshield tip. The values calculated in this analysis have the strut and the off-axis point source in the same plane. For small off-axis angles the unwanted radiation is (nearly) focused onto the strut, making this azimuth the worst case.

Table 5 shows the same analysis but with Martin Black on the baffle surfaces. As was the case with the analysis in the visible band, the percentage numbers vary but the same objects are critical to the system's performance. This is due to the variation in the forward and backward scatter characteristics. In most cases this shifts the percent contributed from a back scatter path to the forward scatter path. Figure 12 shows the relative $A(\theta)$ values for the two runs along with the specifation. The Martin Black $A(\theta)$ values are more often below the IRAS $8-15 \mu$ spec line.

TOTAL POKER -480E-01 -627E-03 -218E-03 - $8712 E-04$-117E-04 -517E-08 -249E-10
*Perkin-Elmer Dasign Number 693-10000 Revision E of 5/9/78 Bro

Fig. 10. Strut Orientation of the IRAS System.

Fig. 12. $A(\theta)$ for $8-15 \mu$ Band of OSS.

Figure 13 compares the $P E$ results with the 5% results. The contribution calculated by PE, as indicated by the dashed line at 10 degrees, is much higher. The contribution from the front side of the aperture is atout 10% higher than predicted by PE for the back side. These are the same values as calculated in the visible, because the 5% black hasn't changed with wavelength.
2.1.3. Black Coatings at Long Wavelengths. When the Martin Black coating was used to evaluate the OSS in the $8-15 \mu$ band, the predicted values were, in several cases, above the $8-15 \%$ spec line. At the longer wavelengths the spec line moves down to lower rejection values. However, existing data indicates that the hemispherical diffuse reflectivity increases with wavelength (Fig. 14). This implies that at some off-axis angles $\Lambda(\theta)$ will be above the spec lines for all the IR bands.

The above statenent must be tempered with the following additional statements: Other measured data ${ }^{9}$ exists which indicates that the increase is not as pronounced (Fig. 15). At the longer wavelengths the surface roughness relative to the wavelength, is much less. As with the mirrors one might suspect that the diffuse BRDF should drop significantly while the specular component will increase. It is not known whether the data in Fig. 14 includes both the specular and diffuse component.

In any case, it is imperative to have measured BRDF data as a function of the input and output angles. Such data is not presently available for the wavelengths above 10.6μ. Without it, the validity of the evaluations at the longer wavelengths is questionable.

雨苞

In the analysis of the filght system, discussed later in this report, it wlll be assumed that the BRDF profiles at all wavelengths remain the same, only the magnitude varles with wavelength as indicated in fig. 14.

If, as discussed above, the coating exhibits a marked specular reflection at the longer wavelengths, this could significantly alter the predicted attenuation factors. Most likely the specular component will not be a delta function but exhibit a relatively high BRDF over a falrly large solid angle ($2.02 \mathrm{sr}^{-1}$). Under such circumstances, the forward scatter from the secondary baffle towards the secondary mirror would be significantly higher and specular reflections from the inner conical baffle towards the field mask would cause addltional problems for large off-axis angles. It would then be desirable to eliminate all possible near-specular paths.

3.0 SUNSHIELD ANALYSIS

This portion of the analysis was performed in two stages. In this section the characteristics of the sunshleld itself will be explored. The overall effect of the sunshield will be discussed later as part of the evaluation of the overall flight system design.

The sunshleld design can be seen in Fig. 10 . Figure 16 shows a profile of the shield. The design of the shield has been detailed elsewhere; ${ }^{10}$ basically it blocks sunlight for off-axis angles greater than 60° when the sun is in the plane of the tip of the cone. Earth light is rejected at 88° for off-axis angles in the opposite direction.

The underside of the sunshield has a specular surface to reduce the thermal loading on the telescope. When the unwanted source is more than

Fig. 16. Specular Reflections off the Sunshield.
64° off axis only diffuse scatter and self-emitted radiation will enter the main tube. For specular surfaces, the emissivity is low and the diffuse scatter is low, hence the heat load will be low and the attenuation high.

However, at small off-axis angles unwanted light is specularly reflected Into the main tube, Increasing the heat load and the $A(0)$ values. The problem is threendimensional, but Fig. 16 will help to clarify the problem. Ray 1 from a source 5.7° off-axis will just reach the entrance part of the main tube. So the increase to the specular reflected energy should start at quite small offaxis angles. Ray 2 is from a source 23.48° off-axis. Beyond this angle, specular paths do not enter the entrance port and the input energy wlll fall off.

The three dimensional nature of the problem also causes skew rays to be focused into the system. To analyze the problem quickly, several scale models of the sunshield were made using specularly coated Mylar. Transmittance measurements ware made as a function of the off-axis position of the source (Fig. 17). The peak input power is for a source point 25° off axis as shown in Table 6. This is very unfortunate because the $A(0)$ for the $0 S S$ is just slightly above the specification for off axis angles of $24-60^{\circ}$ when the system was evaluated using Martin Black. The sunshield will cause the values to go even higher.

By changing the angle of the sunshield, the peak vilue due to specular reflection may be moved to a less obnoxious off-axis angle. Depending on how this is done, it will usually affect moments of inertia and/ or the radiators that presently exist.

Tatle 6. Data from Measurements on a Sample Sunshade.
off-axis Angle $\quad \underline{F}$

0	1.00
5	1.03
10	1.10
15	1.29
20	1.59
25	1.69
30	1.64
35	1.51
40	1.40
45	1.18
50	.99

$\phi_{I N}=\phi_{0} * F$
WIN is the power into the main baffle sections
ϕ_{0} is the power into the system without the sunshield
4.0 FIELD MASK AND LENSES

To analyze the effects of the field stop and the field optics, a single detector was selected and located on axis. The field of view from the detector was calculated using ACCOS by running rays from the edge of the detector surface backwards through the lens, and using the field stop as the limiting aperture for the rays, determining the direction they leave the fleld-optics set. This was done for the band 1 field-lens assembly with the data as supplied by Ball Brothers Research Corporation in a 16 May 1978 letter number 86563.78.0.0038. A picture of this process is shown in Fig. 18. From this data, it was determined that the transfers from the objects along the inside of the inner primarymirror baffle could not reach the detector (Objects $26,27,28$, and 30). These transfers were eliminated from the analysis for the $i R$ single detector.

The field stop is oversized allowing all the stray radiation from the secondary mirror (object 32) and objects Imaged through it to reach the detector. These transfers were changed to account for the smaller size detector rather than the whole Image surface. The limiting field of view from the detector casts an elliptical-shaped hole onto the innersecondary baffle. To model this transfer, the size of the elliptical aperture projected out to the secondary baffle was determined and entered as an obscuration in APART, with the detector beling modeled as a rectangular disk.

4.1 DIFFRACTION EFFECTS

The size of the field stops must be oversized because they are in the far-field diffraction region of the system aperture stop. The field stops are, however, not in the far-field region for power transfers coning directly from the inner-secondary baffle, where here we must consider nearfleld diffraction from a linear edge. In this case, the light rays diffracted around the edge will be of secondary importance compared to the direct rays near the edge which will pass undiffracted to the detector. The inner-secondary baffle is the only object in which edge diffraction would produce any neasurable contribution.

5.0 ANALYSIS OF THE FLIGHT DESIGN
 The preliminaries of the scattered-light analysis on the flight design have been considered. What remains is the scatter and diffraction analysis on the flight-design system as a whole. This section contains the stray-light analysis of the flight system including the OSS, sunshield, field mask and lenses. The diffraction analysis will be presented in the next section.

5.1 SYSTEM MODEL

The physical size and shape of the objects are shown in Figs. 1, 2, and 3, except for the detector area which is shown in Fig. 18.

The BRDF values of the mirrors are according to PE's formula as described in Appendix A. By definltion, there is no wavelength scaling with the 5\% diffuse surface. When Martin Black is used the values and profiles remain constant except for the 100 micron band. In this band the BRDF profile is ASSUMED to remain the same while the magnitude is increased by a factor of 10 . This results in an incease in the $A(\theta)$ of 10^{N} where N is the number of Martin Black-surface scatters encountered.

The scattered light from the sunshield becomes a factor only for very large off-axis angles $\left(288^{\circ}\right)$. The specular component is of no consequence at these angles. No measured BRDF values were avallable for this surface, therefore it was assigned a Lambertian diffuse component of .001 for all wavelengths. At these angles the sunshleld is the only surface that is directly illuminated so the $A(\theta)$ values will scale directly with the sunshields surface scatter. The . 001 BRDF yields $A(\theta)$ values well below the spec line and, as will be seen, diffraction effects predominate at these large off-axis angles.

5.2 SCATTERED LIGHT ANALYSIS 0.4-0.9 BAND

The contribution of power from each object to the image plane is shown in Tables 7 and 8, for the 5% and Martin Black coatings respectively.

At 5° the direct scatter from the directly illuminated primary and secondary mirrors are the major sources of scattered light.

．

ك゙ロスx

 -!

 eobernsecse onrosen erneo Enco for
 -0000.

089090099.99090900000008 090809049

At 10°, the secondary is no longer directly illuminated. The primary mirror and inner-secondary baffle are now the major contributors of scattered light. The mirror scatter remains fixed for both the 5% diffuse and Martin Black calculation, so the relative importance shown in the percent table is due to the change in the black-scattering characteristics.

There are three paths of scatter from the secondary to the detectors (FIg. 19):

1. Directly from the left most sections (20\%) of the baffle to the detector.
2. To the Image of the detector as reflected in secondary (right most sectlons - 20\%)
3. To the image of the detector as reflected by the primary and secondary (right most sections - 20\%).

The projected solid angle of the detector, as seen from the source sections, is 100 times less from the last two positions when compared to the directly seen area. However, the left most sections are not directly llluminated at, or beyond, 10 degrees.

With the 5% black the forward and backscatter contributions are approximately equal. This is unrealistic. With the Martin Black model the black-scatter path (Path 3) drops by a factor of about 10 while the forward scatter BRDF goes up by about 100. The forward-scatter path is the dominant propagation path because of the near specular forward scattering ciaracteristics.

For angles between 17° and 24° the prlmary mirror and aperture stop are both illuminated. The primary receives considerably more power and is thus the major contributor; its relative contribution decreasing as the entrance aperture shades it at larger angles.

Fig. 19. Paths from the Secondary Baffle to the lmage.

For angles larger than 24° no objects are illuminated that are seen from the image. Up to 88° the moin tube (objects $5,6,8$) are Illuminated and these in turn seatter to all of the objects seen by the visible detector. At the 30° angle object 8 can transfer power directly to the inner-secondary baffle which causes its contribution to be higher than for larger angles. For all angles larger than 30 ; the contributions remain falriy constant with only the magnitude dropping with higher angle. At angles greater than 88° the specular heat shield is illuminated (assumed reflectivity $p=0.001$) and this drops the scatter another 4 orders of magnitude.

In summary, the inner-secondary baffle, inner conical beffle, and the mirrors are the dominant sources of scatter. The BRDF at $B-B_{0}=0.01$ of the mirror is $0.414 \mathrm{sr}^{-1}$ which is high even for average quality mirrors. Somewhat better performance can be expected.

Figure 20a shows the plot of $A(\theta)$ for the 5\% diffuse, Martin Black model, and the spec line. The only problem in meeting the specification is at the 60° angle; diffraction is always below the scatter.

5.3 SCATTERED LIGHT ANALYSIS (IIH BAND)

For all the $I R$ bands, the importance of mirror scatter drops significantly. In ideally baffled systems, the $A(\theta)$ values should be determined solely by the optical surfaces (mirror scatter) or by diffraction. However, in this system the limiting factor is either the black surfaces or diffraction. Based upon the avallable information, the hemispherical-diffuse scatter for Martin Black remains relatively constant until the 100μ IR band. The $A(0)$ value will not drop significantly if the principle contributor is a black surface.

Fig. 20a. $A(\theta)$ for Martin Black and 5\% Coatings in the $0.4-0.7 \mu$ Band.
5.3.1. 5° and 10° off-axis Source Positions. The principle path of propagation is from the source to the Inner-secondary baffle (after reflecting off the primary) to the detector as seen in reflection. This is the same path which was discussed in detall in the discussion of the visible band.
5.3.2. $17^{\circ}, 24^{\circ}$ and 30° off-axis Source Positions. The dominant path of scatter is from the front side of the aperture to the detector. This is e bacRscatter direction for near-normal angle of incidence; a near optimum condition for Martin Black. The path is the result of the stop location. Because the stop is not at the secondary, the physical size of the secondary mirror must be oversized to accomodate a field of view, allowing out-of-field elements to be seen from the detector.

At 24° and 30° off-axis angles, power is directly loaded onto the rear sections of the main tube (elements 6 and 8). From there energy scatters directly to the inner-secondary baffle. Half of the radiation on the secondary baffle comes from the last section of vanes on object 6, while the other half comes from object 8. The radiation on the innersecondary baffle then scatters towards the secondary mirror and reflects to the detectors. This second-order path is signlficant enough to almost equal the first-order path from the aperture stop to the detectors.

The specular reflections off the sunshield have their greatest impact at these angles and continuing up to about 50° off-axis. The amount of increase is relative to the values shown in Fig. 19.
5.3.3. 60° to 10 . Off-axis Source Positions. At 60° off-axis the propagation path is from the source to the front section of the outer-
primary baffle, to the inner-secondary baffle (via a reflection off the primary) and then forward scattering to the detector. The specular reflectlons of the sunshield are no longer significant because they do not enter the main tube.

For off-axis angles greater than 88°. the first collecting element must be the specular sunshield. This radiation is scattered the vanes on the main baffle, then to the inner-secondary baffle, and finally to the detector.

5.4 SUMMARY OF THE SCATTERED-LIGHT ANALYSES AND RECOMMENDATIONS.

Figures 20 b to 20 e show the predicted performance of the IRAS system In each of the wavebands. From the previous discussion and the percent table (Table 9) for the 11 micron band, one sees that the mirror scatter is not significant. To reduce the scattered light, one or more of the following steps must be made:

1. Find a better black coating.
2. Change the projected salid angle between the inner-secondary baffle and detectors arid also between the aperture stop and the detectors.
3. Reduce the power that reaches the two critical objects: the aperture stop and the secondary baffle.

The first solution is probably not possible in the near future. The second solution can be realized by shifting the stop to the secondary, sacrificing some light-gathering power. An analysis of the APART output Indicates that the $A(\theta)$ values should drop by a factor of 90 for all but the 5° off-axis position. At this angle the effect of stop shift is too
\qquad

 OFF axis PCSITION

Fig. 20b. $A(\theta)$ for $0 S S$ in the 11μ Band.

Fig. 20c. $A(\theta)$ for OSS in the 22μ Band.

Fig. 20d. $A(0)$ for the OSS in the 65μ Band.

difficult to predict because low mirror scatter will be replaced by higher diffuse scatter. But, without the additional scatter, the forward scattering path would be eliminated, dropping the $A(\theta)$ value by actor of 10 .

The above changes require no change in the secondary baffle design. By making the baffle more cyilindrical and adding cylindrical vanes at the base of the secondary baffle, even lower $A(\theta)$ values can be achieved. It is strongly recommended that these changes be seriously considered.

The above changes would block the most serlous near specular path (off the inner-secondary baffle's black surface), whici would be very high if the surfaces are becoming more specular with wavelength.

A specular black coating on the existing aperture stop would have a lower diffuse scatter than Martin Black. However, this would be effective (lower $A(\theta)$) only for a small range of angles about 17°. The speculareflection would also have to be considered and controlled.

The third solution is a redesign such that the aperture stop and secondary baffle would receive less power requiring a redesign of the sunshield, main-baffle tube, and the use of angled vanes. How effective this could be would depend highly upon the size and shapes that would be allowed.

6.0 DIFFRACTION

Since there is no previous publication on our diffraction algorithm. a detailed explanation of its methods and IImitations will be presented here.

6.1 INTRODUCTION

In the analysis of stray radiation In an optical system due to an out-of-field source, it is usually necessary to calculate the near-field, wide-angle diffraction from apertures that are orders of magnitude largar than the mean wavelength of the radiation. Since the well-known Fresnel or fraunhofer approximations do not apply, this would require doing a two-dimensional complex numerical integration over the area of the aperture with a sampling intervai on the order of a wavelength. Even with :today's computer systems, the storage and calculation requirements would be excessive.

However, we will show how this cumbersome numerical problem can be reduced by sultable approximations to the summation of only a few numbers. The procedure involves a rigorous transformation of the two-dimensional integral over the aperture to a one-dimensional integral along the edge of the aperture. This one-dimensional integral can then be accurately approximated by the sum of the contributions from a few points on the aperture edge. The final simplification involves neglecting the phases of the individual contributions so that complex numbers do not have to be used.
6.2.1 Scalar Diffraction Theory. The various components of electric and magnetic field vectors are coupled together by Maxwell's equations. A self-consistent solution of these equations for complex arbitrary geometries and materlals would be difficult. Few such solutions exist even for simple idealized systems. However, the problem can be simplified by assuming that the transverse components are independent of each other so that we will only have to deal with a single scalar quantity, u, that ${ }^{\circ}$ represents one of the transvarse components. This assumption turns out to yield accurate results as long as the size of the apertures and observation distances are many wavelengths.

Since this complex scalar field amplitude $u(x, y, z, t)$ obeys the wave equation, for harmonic time signals, u becomes independent of time and must be a solution of the Helmholtz equation.

$$
\begin{equation*}
\nabla^{2} u+k^{2} u=0 \quad\left(k=\frac{2 \pi}{\lambda}\right) \tag{1}
\end{equation*}
$$

The solution in the case of diffraction can be represented as a twodimensional integral over the diffracting aperture. ${ }^{11}$

Fig. 21. Typical Geometry for Diffraction Integral

$$
\begin{equation*}
u(P)=\frac{1}{4 \pi^{\prime}} \iint_{A}\left(G \frac{\partial u}{\partial n}-u \frac{\partial G}{\partial n}\right) d \sigma \tag{2}
\end{equation*}
$$

where G is a Green's function which will be specified later.

It is necessary to know the value of the fleld and its normal derivative everywhere on the aperture. In general, this would be anction of the material properties of the diffracting aperture. If we assume that the aperture is perfectly absorbing or "black", then Kirchhoff's approximate boundary conditions may be used in the plane of the aperture:

$$
\begin{cases}u=\frac{\partial u}{\partial n}=0 & \text { outside aperture opening } \tag{3}\\ u \in \frac{\partial u}{\partial n} \quad & \text { are the same as the incident } \\ \text { field inside opening }\end{cases}
$$

Although these conditions seem quite reasonable, they lead to a mathematical inconsistency in that they are not reproduced by our formula for the diffracted field when the observation point is in the aperture plane. Nevertheless, experimental measurements ${ }^{12}$ have found that they produce surprisingly accurate predictions, again as long as we are not too near the aperture.

It is now left to specify the function G. G must also be a solution of the Helmoltz equation. The simplest choice turns out to be a spherical wave that emanates from the point of interest in the aperture.

$$
\begin{equation*}
G=\frac{e^{i k r}}{r} \tag{5}
\end{equation*}
$$

This choice of Green's function corresponds to the Fresnel-Kirchhoff formulation of diffraction. Other Green's functions are possible which can lead in some cases to substantially different results. We will return to this point in a later section.
6.2.2 Boundary Wave Diffraction. The edge of a diffracting aperture appears bright when viewed from within the shadow. This observation was given theoretical footing by Sommerfeld!s rigorous solution of the diffraction from the semi-infinite plane. ${ }^{13}$ His result could be manipulated to yield a wave component that emanates from the edge.

Then Rubinowicz was able to rigorously decompose the Kirchhoff scalar diffraction formula into a geometric wave and a diffracted boundary wave for arbitrary apertures by properly modifying the region of integration. 14

Fig. 22. Regions of Integration in Boundary-wave Formulation. Then

$$
\begin{equation*}
u=u_{G}+u_{D} \tag{6}
\end{equation*}
$$

where the geometrical field is:

$$
\begin{align*}
u_{G}= & \frac{e^{i k d}}{d} \tag{7}\\
0 & \text { in light region } \\
0 & \text { in shadow region }
\end{align*}
$$

and the diffracted field is given by: ${ }^{15}$

$$
\begin{align*}
u_{0} & \left.=\frac{1}{4 \pi} \iiint_{0} \frac{e^{i k r}}{r} \cdot \frac{\partial}{\partial n} \frac{e^{i k \rho}}{\rho} \cdot \frac{e^{i k \rho}}{\rho} \cdot \frac{\partial}{\partial n} \frac{e^{i k r}}{r}\right) d \rho \\
& =-\frac{1}{4 \pi} \int_{r} \frac{e^{i k(r+\rho)}}{r \rho} \frac{(\hat{r} \times \hat{\rho}) \cdot L}{(1+\hat{r} \cdot \hat{\rho})} d \ell \tag{8}
\end{align*}
$$

On the boundary of the geometric shadow where $\hat{r} \cdot \hat{\rho}=-1$, both the geometrical and diffracted field are discontlnuous. These discontinulties compensate one another such that the total field is continuous across the shaidow edge.
6.2.3. The Method of Stationary Phase. We have reduced the calculation of diffraction from integrating over an area to integrating along a IIne. For the large apertures encountered in real optlcal systems, thls one-dimensional integral would still require excessive calculational effort, elther analytically or numerically. However, because the apertures are orders of magnitude larger than the wavelength, the stationary phase approximation can be applled.

For convenience, we can write the equation for the diffracted field in the form:

$$
\begin{equation*}
u_{D}=\int_{a}^{b} f(l) e^{i k \mu(l)} d l \tag{9}
\end{equation*}
$$

The interval of integration $[a, b]$ does not necessarlly enclose the entire edge since the edge could be only partially llluminated by the source or seen from the observation point due to intervening objects.

This integral can be suitably approximated by the method of stationary phase: ${ }^{16}$

$$
\begin{gather*}
u_{0}=\sum_{i=1}^{N} f\left(l_{1}\right) e^{i k\left(l_{i}\right)} \sqrt{\frac{2 \pi}{K \mu^{1 /(}\left(l_{1}\right) \mid}} e^{1 \pi / 4 \cdot \operatorname{sign}\left(\mu^{\prime \prime}\left(l_{i}\right)\right)} \\
\quad+\frac{f(b) e^{i k \mu(b)}}{i k \mu^{\prime}(b)}-\frac{f(a) e^{i k \mu}(a)}{i k \mu^{\prime}(a)}+o\left(\frac{1}{k^{2}}\right) \tag{10}
\end{gather*}
$$

Fig. 23. Vector Definitions for Stationary Phase Approximation to the Boundary Wave Integral.
where

$$
\begin{aligned}
& \mu(l)=r+\rho \\
& \mu^{\prime}(l)=-(\hat{r}+\hat{\rho}) \cdot \ell=\frac{d \mu(l)}{d \ell} \\
& \mu^{\prime \prime}(l)=\frac{(\hat{r} \times \hat{l})^{2}}{r}+\frac{(\hat{\rho} \times \hat{l})^{2}}{\rho}-\frac{(\hat{r}+\hat{\rho}) \cdot \hat{\rho}}{R} \\
& f(l)=\frac{-a(l)(\hat{r} \times \hat{\rho}) \cdot l}{4 \pi r(1+\hat{r} \cdot \hat{\rho})}, a(l)=\text { incident amplitude } a \frac{1}{\rho}
\end{aligned}
$$

The points on the edge of stationary phase (minimum or maximum optical path difference from source to edge to observation point) are determined by:

$$
\begin{equation*}
\mu^{\prime}\left(\ell_{1}\right)=0 \quad a<\ell_{1}<b \quad 1=1, N \tag{11}
\end{equation*}
$$

In the case of a closed smooth path of integration, there will bu in general at least two points of stationary phase and the contribution from the end points of the integration.will be zero. In most cases, the contribution from the endpoints will be negligible if e point of stationary phase exists within the interval because it scales as λ^{2} as opposed to only λ for the stationary phase contribution.

6.2.4. Addition of the fields from the Diffraction Points. The

 diffracted field at the observation point now has the form of a simple summation of complex numbers, i.e.,$$
u_{0}=\sum_{n=1}^{N} A_{n} e^{1 \varphi_{n}} \quad \begin{array}{ll}
A_{n}=\theta_{n} \text { REAL } \tag{12}\\
A_{n}=0
\end{array}
$$

where N is the number of stationary phase points on the diffracting element of the edge plus two. The irradiance is just the modulus squared of U_{0} :

$$
\begin{equation*}
E_{D}=\left|u_{D}\right|^{2}=u_{D} u_{D}^{*} \tag{13}
\end{equation*}
$$

Upon substitution:

$$
\begin{align*}
E_{D} & =\left[\sum_{n=1}^{N} A_{n} e^{i \phi_{n}}\right] \cdot\left[\sum_{n=1}^{N} A_{n} e^{-i \phi_{n}}\right] \\
& =\sum_{n=1}^{N} A_{n}^{2}+2 \sum_{n=1}^{N} \sum_{m=1}^{N} A_{n} A_{m} \cos \left(\phi_{n}-\phi_{m}\right) \tag{14}
\end{align*}
$$

Since the a's and ϕ 's are smooth functions of the system variables, the first term represents the D.C. component while the second term contains the oscillitory behavior. If we want the envelope of the diffraction pattern in the vicinity of the observation point, let

$$
\begin{equation*}
\cos \left(\phi_{n}-\phi_{m}\right) \rightarrow 1 \tag{15}
\end{equation*}
$$

then:

$$
\begin{align*}
\operatorname{Max}\left[E_{D}\right] & =\sum_{n=1}^{N} A_{n}^{2}+2 \sum_{n=1}^{N} \sum_{m=1}^{N} A_{n} A_{m} \\
& =\sum_{n=1}^{N} A_{n}^{2} \tag{16}
\end{align*}
$$

i.e., the different terms are exactly in phase.

Suppose, that one is more interested in an average value or, in a statistical sense, the most likely value of the irradiance. The phase is related to the system parameters by:

$$
\begin{equation*}
\phi-\frac{2 \pi}{\lambda} \cdot[\text { OPTICAL PATH LENGTH] } \tag{17}
\end{equation*}
$$

It is therefore a function of the source location, observation point location, location of the edge and wavelength of the radiation. If the incoherent source and/or detector are of a finite size then it is necessary to integrate over ther. Likewise, if this incident radiation is polychronatic, then one must integrate over the wavelength sand, In general, the phase difference will vary rapidly, so that the integration will be over a function that oscillates many times around a mean value of zero. Therefore, $\int \cos \left(\phi_{n}-\phi_{m}\right)=0 \quad$ and

$$
\begin{equation*}
\int E_{D}=\int \sum_{n=1}^{N} A_{n}^{2} \tag{18}
\end{equation*}
$$

The average value of the irradiance is:

$$
\begin{equation*}
\left\langle E_{0}\right\rangle=\sum_{n=1}^{N} A_{n}^{2} \tag{19}
\end{equation*}
$$

One could arrive at the same result using an, equivalent statistical argument. If the location of the source, aperture, and observation point and vavelength have a certaln uncertainty assoclated with them, then the phase is a random number. If its distrit:ution function extends over many radians (O.P.D. of several wavelengths), then the expectation value of the cosine of the phase differences will be zero. Therefore, the expected salue of the irradiance is just an incoherent superposition of the individual contributions:

$$
\begin{equation*}
\left\langle E_{D}\right\rangle=\sum_{n=1}^{N} A_{n}{ }^{2} \tag{20}
\end{equation*}
$$

Finally, suppose all the contributions are approximately equal then:

$$
\begin{equation*}
A_{n} \propto a \quad n=1,2 \ldots N \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Max}\left[E_{D}\right] \simeq N\left\langle E_{D}\right\rangle \tag{22}
\end{equation*}
$$

However, if one contribution dominates over the others

$$
\begin{equation*}
A_{1}=A \& A_{2}=A_{3} \ldots A_{n} \simeq 0 \tag{23}
\end{equation*}
$$

then

$$
\begin{equation*}
\max \left[E_{D}\right]=\left\langle E_{D}\right\rangle \tag{24}
\end{equation*}
$$

Therefore, it depends on the particular problem as to which number ifs more meaningful. In elther case, it is not necessary to keep track of the phases of the individual diffraction contributions, and the calculation of diffracted energy is reduced to the summation of a few real numbers.

6. 3 THE PADE COMPUTER PROGRAM

A computer program, based on the theory develo, in the preceding section, has been written to calculate the diffracted energy in a complex optical system. Called PADE (Paraxial Analysis of Diffracted Energy), the program is structured after the APART program so that the two can be used in conjunction to calculate mixed mode, l.e., diffraction and scattering, stray radiation paths.

As in APART, objects are divided Into sections.

Fig. 24. Sectioned Diffracting Edge.
Imaging and obscurations are handled just as they are in APART.
To calculate the diffracted energy from a particular section on the edge, a modification of the basic APART equation (see Appendix C) is used:

$$
\begin{equation*}
\phi_{c}=E_{i} \cdot B D D F \cdot G C F \tag{25}
\end{equation*}
$$

where ${ }_{c}$ is the power on the collector area and $E_{\mathcal{l}}$ is the power incident on a unit area surface normal to the incoming beam at the edge point. The GCF' factor is the same as in APART except that the edge is treated as a ficticious unit area surface normal to both the incoming and outcoming beam depending on whether it is collector or source, respectively. The BRDF of a scattering surface has been replaced by a newly defined function the BDDF (Bi-directional Diffraction Distribution Function) which contains the digectional characteristics of the diffraction process at the edge.

A spherical coordinate-system is used in specifying the incoming and outgoing directions from the center of each edge segment.

Fig. 25. Local Spherical Coordinate System for Edge Segment.

For an arbitrary unit vector \hat{v} :

$$
\left\{\begin{array}{l}
\hat{v} \cdot \hat{x}=\sin \phi \sin \theta \tag{26}\\
\hat{v} \cdot \hat{y}=\cos \phi \\
\hat{v} \cdot \hat{z}=\sin \phi \cos \theta
\end{array}\right.
$$

We adopt the convention that the subscript "l" refers to the incoming direction and "o" to the outgoing. Also we must define the BDDF according to the power equation

$$
\begin{equation*}
\text { BDDF }=\frac{E_{c}}{E_{1}} \cdot r_{0}{ }^{2} \tag{?.9}
\end{equation*}
$$

where E_{c} is the Irradiance ot the collector, which is a distance r_{0} away, and E_{f} is the Irradiance incident onto the edge.

The BDDF will have three separate forms. (Since we assume incoherent addition, each contribution can be treated separately.) The first is the simplest and occurs when the optical path difference is constant across the edge segment. The last two correspond to the two terms of the stationary phase approximation. In all cases there is one factor that is common to all of them:

$$
B^{\prime}=\left[\begin{array}{c}
\left(\hat{r}_{0} \times \hat{r}_{1}\right) \cdot \ell \tag{30}\\
4 \pi\left(1+\hat{r}_{0} \cdot \hat{r}_{1}\right)
\end{array}\right]
$$

The vector operations can be written in terms of the incoming and outgoing angle pairs (ϕ_{i}, θ_{1}) and (ϕ_{0}, θ_{0}).

$$
\begin{align*}
\left(\hat{r}_{0} \times \hat{r}_{1}\right) \cdot l & =\cos \phi_{0} \sin \phi_{1} \cos \theta_{1}-\sin \phi_{0} \cos \theta_{0} \cos \phi_{1} \tag{31}\\
\hat{r}_{0} \cdot \hat{r}_{1} & =\cos \phi_{1} \cos \phi_{0}+\sin \phi_{1} \sin \phi_{0} \cos \left(\theta_{1}-\theta_{0}\right) \tag{32}
\end{align*}
$$

When the O.P.D. across the edge segment of length L is less than a wavelength λ, then

$$
\begin{equation*}
B D D F=B^{\prime} L \tag{33}
\end{equation*}
$$

which is independent of λ.
Otherwise, the method of stationary phase is employed, and one must know whether a point of stationary phase is located within the segment. This point is located where

$$
\begin{equation*}
\mu^{\prime}(l)=\mu^{\prime}(0)+\mu^{\prime \prime}(0) l+\ldots=0 \tag{34}
\end{equation*}
$$

ℓ is the arclength distance from the center of the segment. The two derivative terms can be written as:

$$
\left\{\begin{align*}
\mu^{\prime}(0) & =-\left(\hat{r}_{0}+\hat{r}_{1}\right) \cdot l=-\left(\sin \phi_{1} \sin \theta_{1}+\sin \phi_{0} \sin \theta_{0}\right) \tag{35}\\
\mu^{\prime \prime}(0) & =\frac{\left(\hat{r}_{0} \times l\right)^{2}}{r_{0}}+\frac{\left(r_{1} \times \ell\right)^{2}}{r_{1}}-\frac{\left(\hat{r}_{0}+\hat{r}_{1}\right) \cdot \hat{n}}{R} \\
& =\frac{1-\left(\sin \phi_{0} \sin \theta_{0}\right)^{2}}{r_{0}}+\frac{1-\left(\sin \phi_{1} \sin \theta_{1}\right)^{2}}{r_{1}}-\frac{\cos \phi_{1}+\cos \phi_{0}}{k}
\end{align*}\right.
$$

where r_{i} is the distance to the source, and R is the radius of curvature of the segment. Tine approximate arclength distance to the stationary phase point is therefore:

$$
\begin{equation*}
\ell_{S}=-\frac{\mu^{\prime}(0)}{\mu^{\prime \prime}(0)} \tag{37}
\end{equation*}
$$

If $\ell_{s}>L$, then there is definitely no stationary phase point within the segment. The BDDF now depends on whether this segment is at the endpoint of the integration. In other words, if the adjacent segments on each side of the present one are both illuminated by the source, and seen from the collector, the BDDF is zero for the segment even though radiation falls on it. If only one adjacent path is not possible then:

$$
\begin{equation*}
B D D F=B^{\prime}\left[\frac{\lambda}{2 \pi \mu^{\prime}(0)}\right]^{2} \tag{38}
\end{equation*}
$$

If both adjacent paths are impossible, the $B D D F$ is twice this. In either case, the diffraction is proportional to the square of the wavelength.

The formula for ℓ_{s} is only approximate and it is important to know precisely whether the stationary phase point is in the interval $|\ell| \leq \frac{L}{2}$.

If we knew $\mu^{\prime}(l)$ at the ends of the segment then we would be able to tell by the relative signs of $\mu^{\prime}(\Omega)$ at these points, ie..

$$
\begin{array}{ll}
\text { IF } \mu^{\prime}\left(-\frac{L}{2}\right) \mu^{\prime}\left(\frac{L}{2}\right) \leq 0 & \text { then } \\
\quad\left|\ell_{s}\right| \leq \frac{L}{2} \\
\text { IF } \mu^{\prime}\left(-\frac{L}{2}\right) \mu^{\prime}\left(\frac{L}{2}\right)>0 & \text { then } \quad\left|\ell_{s}\right|>\frac{L}{2}
\end{array}
$$

It turns out that $\mu^{\prime}(\ell)$ can be expressed exactly in terms of the midpoint information for a curved or straight segment. First, define:

$$
h()=\left\{\begin{array}{l}
\frac{\left(\frac{R}{r}-\cos \phi\right) \sin \left(\frac{\ell}{R}\right)-\sin \phi \sin \theta \cos \left(\frac{\ell}{R}\right)}{\sqrt{1+2 \frac{R}{r}\left[\left(\frac{R}{r}-\cos \phi\right)\left(1-\cos \left(\frac{\ell}{R}\right)\right)-\sin \phi \sin \theta \sin \left(\frac{\ell}{R}\right)\right]}} \begin{array}{l}
\frac{\ell}{r}-\sin \phi \sin \theta \\
\sqrt{1+\frac{\ell}{r}\left[\frac{\ell}{r}-2 \sin \phi \sin \theta\right]}
\end{array} \text { STRAIGHT EDGE }
\end{array}\right.
$$

then

$$
\begin{equation*}
\mu^{\prime}(l)=h_{i}(l)+h_{0}(l) \tag{40}
\end{equation*}
$$

If the stationary phase point is definitely in the segment, then by the method of stationary stat lonary phase:

$$
\begin{equation*}
8 D D F=B^{\prime} \frac{\lambda}{T \mu^{\prime \prime}(0) T} \tag{41}
\end{equation*}
$$

which varies proportionately with the wavelength. . The subdivision of the edge is selected so that there is only one point of stationary phase. in any one segment.

6. 4 COMPUTER ANALYSIS OF IRAS

6.4.1. Introduction. The analysis of stray radiation due to diffraction in the IRAS system was performed using the PADE computer program, Arizona's version of the GUERAP II program and analytical methods. The combination of the three not only served to provide a cross check but to make up for the limitations of each. The GUERAP II program cannot handle struts or diffracting edges after an optical element. The PADE program was developed to overcome these deficiencies. However, it proved to be too cumbersome in analysis the fine-scale diffraction from the struts and therefore more elegant analytical methods were employed.
6.4.2. PADE Analysis. The figure of merit used in this analysis is the customer's attenuation factor $A(\theta)$. It is defined as the ratio of the detector power for an off-axis source to an on-axis one divided by the solld angle of the detector

$$
\begin{equation*}
A(\theta)=\frac{P(\theta)}{\Omega \cdot P(0)} \tag{42}
\end{equation*}
$$

If the irradiance on the image plane is fairly uniform, then $A(\theta)$ is insensitive to the size of the detector since both Ω and $P(\theta)$ are proportional to the area of the detector. For this diffraction analysis, the image plane was divided into 18 equal areas.

The irradiance at the center points of each section due to diffraction is calculated by the PADE program and then multiflied by the area of the section in order to get the total power on the section. (This

Fig. 26. Sectioned Image Plane.
assumes the irradianice is uniform across the section which is not the case for the sharp peaked diffraction spikes). The power from each section is summed up to get the total power in the image plane. It is this power combined with the solid angle of the entire image plane, $\Omega=\frac{\pi(5.04)^{2}}{550^{2}}=2.6 \cdot 10^{-4}$ which is used to c.c.culate the $A(\theta)$. Essentially we consider the image plane to be alg detector whose output is the average of 18 point detectors. This should be kept in mind when interpreting the results of this analysis.

The diffracting edges used in the analysis of IRAS are shown in Figs. 27, 28, and 29. Figure 29 also defines the azimuthal angle ϕ. Edges with two digit numbers can be seen by the detectors in the image plane. Therefore, as long as they are illuminated by the source the system will be dominated by first-order diffraction. Below $\sim 14^{\circ}$ the \cdot. first order diffraction scales by λ since it is due primarily to contributions from stationary phase points on the circular apertures. Up to about 24° the diffraction will scale as λ^{2} since it is the result of the endpoint term of the stationary phase method. The one exception occurs at the peak of a diffraction spike $\left(\phi \simeq 90^{\circ}\right)$ from the struts.

Due to the point-like nature of our image plane array, the diffraction will be independent of the wavelength in this case.

For source angles greater than 24°, none of the critical edges are llluminated and second-order diffraction dominates. This Involves diffracting off the entrance aperture (edge (4) and then proceeding to diffract from the critical two-digit edges. The angle at which the entrance aperture stops receiving energy from the source depends upon the gimuth of the source be:ause of asymmetrical nature of the front of the sunshield. When the source angle is larger than this angle, the dominant diffraction path is from the source to the tilted elliptical shield aperture to the entrance aperture to the critical edges to the detector, l.e., third-order diffraction. No fourth order diffraction paths were considered in this analysis.

The primary analysis was carried out at a wavelength of 102.5μ and for three azimuth angles; $20^{\circ}, 90^{\circ}$ and 180°. The off-axis angles for each azimuth were picked in order to bracket key angles, l.e., where the diffraction goes from one order to the next. The resulting attenuation factors along with the specification are plotted in fig. 30. All points lie below the spec. except for the 85° off-axis, 180° azimuthal point which is approximatelv an order of magnitude higher. The three azimuth results are approximately the same up to 45° off-axis after which the asymmetrical shield causes a drop from second to third-order diffraction.

Tables 10,11 , and 12 are compllations of the percentage contribution to the energy in the image plane from the critical edges for each azimuth. At 5° off-axis, the distribution for the 20° and 180° azimuths

Fig. 30. Attenuation Factor vs. Off-axis Angle for $\lambda=102.5 \mu$.
Table 10. Diffraction Contribution for 20° Azimuth.

Table II. Diffraction Contributions for 90° Azimuth.

[^0]Table 12. Diffraction Contributions for 180° Azimuth.
Percent of Power Contributed by Each Object as a Function of Off Axis Source Position
0000000cOOnnmod00m00000nm0000000

are nearly identical. The only difference being the expected asymmetric contribution from strut edges 11 and 12 for 20° azimuth. However, these results differ greatly from the 90° azimuth distribution. Now the lowerstrut edge $\$ 10$ is the major contributor instead of the aperture stop. At first glance, this seemed correct since this is the azimuthal angle at which one would expect a long diffraction spike to cross the image plane. However, the diffracted energy is about two orders of magnitude smaller than analytical expressions predicted. This discrepancy is covered in detail in Section 6.5.

At the higher source angles, nearly all the diffracted energy comes from the aperture stop. This is because the source for the critical edges at these angles is the entrance aperture. The diffracted energy from a circular edge is approximately proportional to δ^{-3} where δ is the diffraction angie, i.e., the angle between the incoming and outgoing direction. Since the angle subtended by the image of detecter array is small, the outgoing direction is essentially parallel to the optical axis. Thererure, δ is much smaller for the aperture stop than any other critical edge, and the diffraction from it will dominate.

The 102.5μ results can be ssaled to produce the other bands. In particular, each data point is scaled by λ^{n} according to which diffraction order n dominates. The attenuation factors for the mean wavelengths of the other bands are plotted in Figs. 31, 32, 33 and 34. In all cases, the results are near or below the specifications.

6.4.3. GUERAP II Analysis. A diffraction analysis of IRAS was

 also done using Arizona's version of the GUERAP II diffraction program. The program is based upon the same theory as PADE except that it calculates only the contributions from points of stationary phase and not from the integration end points or edges with constant phase difference across them. ${ }^{17}$ For this reason, GUERAP 11 cannot handle straight edges in general and therefore cannot calculate the diffraction from the struts. Even for points of stationary phase, the actual implementation of the same equation is considerably different in the two codes. GUERAP II considers the diffraction to occur along an astigmatic differential ray while PADE treats the ditiracting edge as a psuedo-scattering surface with a specular BRDF. The calculations of the two programs were compared against the analytical solution for first-order diffraction off a circular aperture (see Appendix 3) and all three results differed by less than 1% from each other.Because of program limitations, GUERAP II also cannot do diffraction off of edges that follow an optical element. (The secondary mirror edge is an example.) None of these edges were the major sources of diffracted energy in the PADE analysis.

Figure 35 is a comparison of the PADE, GUERAP II, and Perkin-Elmer calculations for two different wavelengths. PADE and GUERAP II agree quite well at 5° off-axis where the first-order diffraction off the aperture stop dominates. However, the Perkin-Elmer hand calculation seems to the somewhat low. For the larger source angles, second-order diffraction dominates and the computer calculations differ by nearly an order of magnitude. This is probably a combination of two things.

Fig. 31. Attenuation Factor vs. Off-axis Angle for $\lambda=64.5 \mu$.

Fig. 32. An:enua+ ion Factor vs. Off-axis Angle for $\lambda=22.5 \mu$.

Fig. 33. Attenuation factor vs. Off-axis Angle for $\lambda=11.5 \mu$.

Fig. 34. Attenuation Factor vs. Off-axis Angle for $\lambda=6.5 \mu$.

Fig. 35. Comparison of PADE, GUERAP II and Perkin-Elmer's Calculations.

First, the Arizona version of GUERAP II was found to produce inconsistent results for multiple diffraction, elthough single diffraction tests out fine. Second, due to the quantum nature of the PADE algorithm, its calcilation will tend to be low for multiple diffraction. A future version of the program will minimize this effect.

6.5 ANALYTICAL RESULTS FOR STRUTS

6.5.1. Introduction. The diffraction from the struts will produce a sharply peaked patitern in the image plane. It would be economically Infeasible to use the computer program to reproduce the fine scale structure of this pattern due to the very small sampling interval that would be required for the azimuthal angle. However, the geometry of the struts permits the use of a modified Fraunhofer approximation to the diffraction integral. Therefore, an accurate analycical expression for the diffraction from an equivalent tilted slit can be found.

6.5.2. Angular Spectrum Approach to Diffraction. The standard

 Fraunhofer formula expresses the diffraction field in the focal plane perpendicular to the optical axis in terms of a scaled Fourier transform of the aperture function $a(x, y) .18$

Fig. 36. Usual Fraunhofer Diffraction Geometry.
where

$$
\begin{align*}
& u(x, y) \propto A\left(\frac{x-x_{i}}{f}, \frac{y-y_{1}}{f}\right) \tag{43}\\
& A(\xi, n)=\iint_{-\infty}^{\infty} a(x, y) e^{-1 k(\xi x+n y)} d x d y \tag{44}
\end{align*}
$$

and $\left(x_{j}, y_{p}\right)$ are the coordinates of the intersection of the incident ray through the center of the aperture with the observation plane. Note that the diffrscted field is shift-invariant, l.e., the pattern shifts along with the incident point but dses not change shise around it.

We could easily calculate the diffraction from a rectangular sift using the abuve formulation. Except that the approximations used in its derivation woulf restrict us to small regions around the optical axis, l.e., small angles of incidence and diffraction. Tilting the slit by a large angle ($\approx G 8^{\circ}$) is equivalent to large incident and diffraction angles, a violation of the usual fraunhofer assumptions. However, it is possible to find a similar expression for the diffracted field on a hemisphere of radius f centered on the aperture, that is accurate for large angles. 19 This approach is based on the angular spectrum of plane waves and expresses the field in terms of direcion cosines instead of spatial coordinates.

Fig. 37. Real Space

Fig. 38. Direction Cosine Space

The field on the hemisphere is now proportional to:

$$
A\left(\alpha-a_{1}, B-\beta_{1}\right)
$$

and therefore shift-invarlant lin direction cosine space.
The full expression for the field is given by:

$$
\begin{equation*}
u=e^{\frac{e^{i k f}}{T \lambda f}} A\left(a-a_{1}, B-\beta_{1}\right) \tag{45}
\end{equation*}
$$

where Q is an obliquity factor that depends on the Green's function used in the basic scalar-diffraction integral. For the Fresnel-Kirchhoff theory

$$
\begin{equation*}
G=\frac{e^{i k r}}{r}, \quad Q=\frac{\gamma^{+\gamma_{1}}}{2} \tag{46}
\end{equation*}
$$

where Y is the z-direction cosine of the observation point and $Y_{\mathbf{\prime}}$ of the incident poirt. In the diffraction theory of Rayleigh and Sommerfeld, the Green's function is selected 1 i; order to remove the mathematical inconsistency of the fresnel-Kirchioff theory by requiring that only the fleld and not its normal derivative need to be known at the aperture. The Green's function that accomplishes this vanishes everywhere in the aperture plane:

$$
\begin{equation*}
G=\frac{e^{i k r}}{r}-\frac{e^{i k \tilde{r}}}{\tilde{r}} \tag{47}
\end{equation*}
$$

where \dot{r} is the distance from the puint in this aperture to the image formed by the aperture plane of the observation point. This leads to an obliquity factor given simply by:

$$
\begin{equation*}
Q=r \tag{48}
\end{equation*}
$$

The differwice between the two forms of the obliquity factor can best be shown in a polar diagram for $\gamma_{i}=1$.

Fig. 39. The 'fwo Diffarent Obliquity Factors.
-
Substantially different predictions would occur at large diffraction angles. Experimental data in this region is needed to decide between the two. In the absence of such data, we have chosen to use the FresnelKlrchhoff obliquity factor since it is based on the same theory as the computer algorithm and therefore will permit checking of the analytical and numerical results.
6.5.3. The Rectangular silt. The diffraction from one strut can be equivalently represented by its complement, a rectangular silt. The field due to the three struts will be the sum of three properly oriented slits. It will be sufficlent for our purposes to consider just the field due to one strut.

The transmission function for a rectangular slit can be writtefr in the form

$$
\begin{equation*}
a(x, y)=\operatorname{RECT}\left(\frac{x}{\Delta x}\right) \cdot \operatorname{RECT}\left(\frac{y}{\Delta y}\right) \tag{49}
\end{equation*}
$$

$$
\operatorname{RECT}(x)=\begin{array}{cc}
1 & |x|<\frac{1}{2} \\
\frac{1}{2} & |x|=\frac{1}{2} \\
0 & |x|>\frac{1}{2}
\end{array}
$$

88

Fig. 40. Transmission Function for Rectangular Slit.
The spectrum of this furiction is:

$$
\begin{equation*}
A(\xi, \mu)=[\Delta x \cdot \operatorname{sinc}(\xi \Delta x / \lambda)] \cdot[\Delta y \cdot \operatorname{sinc}(n \Delta y / \lambda)] \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x} \tag{51}
\end{equation*}
$$

Upon substitution, the diffracted field is found to be:

$$
\begin{equation*}
u=\frac{\left(\gamma+\gamma_{j}\right) \Delta x \Delta y}{i 2 \lambda f} \cdot\left[\operatorname{sinc} \Delta x\left(\alpha-\alpha_{i}\right) / \lambda\right] \cdot \operatorname{sinc}\left[\Delta y\left(\beta-\beta_{i}\right) / \lambda\right] \cdot e^{i k f} \tag{52}
\end{equation*}
$$

and the irradiance is given $i y$:

$$
\begin{equation*}
E=\left\{\frac{\left(\gamma+\gamma_{j}\right) \Delta x \Delta y}{2 \lambda f} \cdot \operatorname{sinc}\left[\Delta y\left(c-\alpha_{p}\right) / \lambda\right] \cdot \operatorname{sinc}\left[\Delta y\left(\beta-\beta_{p}\right) / \lambda\right]\right\}^{2} \tag{53}
\end{equation*}
$$

If $\Delta y \Rightarrow \Delta x$, then the diffraction pattern has the form of straight short and long diffraction spikes in direction cosine space. However, the spikes will appear curved when projected on the hemisphere depending on how the observer is oriented with respect to the plane of the apertore.

The direction cosines can be expressed in terms of the off-axis and azimuthal angles, θ and ϕ respectively.

$$
c-2
$$

Flg. 41. Diffraction Splkes in Direction Cosine Space.

Fig. 42. Defin!tion of System off-axis and Azimuth Angles.

$$
\begin{align*}
& a=\frac{x}{f}=\sin \theta \sin \phi \tag{54}\\
& \beta=\frac{y}{f}=\sin \theta \cos \phi \tag{55}\\
& y=\frac{Y}{f}=\cos \theta
\end{align*}
$$

For an on-axis detector $\theta=0$, therefore this condition becomes

$$
\begin{equation*}
\theta_{1}=\sin _{1} \theta_{i} \cos \phi_{1}=0 \tag{58}
\end{equation*}
$$

If the source is off-axis, l.e., $0=0$, then the detector will pick up the spike when

$$
\begin{equation*}
\cos \phi_{1}=0 \tag{59}
\end{equation*}
$$

or for source azumuthal angles,$= \pm 90^{\circ}$. The two halves of the splke are diametrically opposed since $\phi_{i}^{+}-i_{i}^{-}=180^{\circ}$.

The peak of the long splke can be expressed in terms of the attenuation factor $A(\theta)$ for small infinitesimal on-axis detector of area A_{0}. Let A_{0} be the area of the collecting aperture, then

$$
A(\theta)=\frac{P(\theta)}{\lambda_{0} \cdot P(0)}=\frac{|f \cdot u|^{2}}{A_{0}} \quad\left\{\begin{array}{l}
n=\frac{A_{0}}{f^{2}} \tag{60}\\
P(\theta) a A_{0}|u|^{2} \\
P(0) a A_{0}
\end{array}\right.
$$

with

$$
\begin{align*}
& \beta=\beta_{1}, \alpha=0, a_{1}=\sin \theta_{1}, r_{1}=\cos \theta_{1} \tag{61}\\
& A\left(\theta_{1}\right)=\frac{1}{A_{0}}\left\{\frac{\left(1+\cos \theta_{1}\right) \Delta x \Delta y}{2 \lambda} \operatorname{sinc}\left[\Delta x \cdot \sin \left(\theta_{1}\right) / \lambda\right]\right\}^{2} \tag{62}
\end{align*}
$$

The envelope of this is:

$$
\begin{equation*}
\frac{1}{A_{0}}\left[\frac{\left(1+\cos \theta_{1}\right) \Delta y}{2 \pi \cdot \sin \theta_{1}}\right]^{2}=\frac{1}{A_{0}}\left[\frac{\Delta i}{2 \pi \cdot \tan \left(\theta_{i} / 2\right)}\right]^{2} \tag{63}
\end{equation*}
$$

substituting in the following values:

$$
\left\{\begin{array}{l}
\theta_{1}=5^{\circ} \tag{64}\\
\Delta y=20 \mathrm{~cm} \\
A_{0}=2400 \mathrm{~cm}^{2}
\end{array} \quad A\left(\theta_{1}\right)=2.21\right.
$$

It is important to point out that the envelope of the spike is rigorously independent of wavelength only for a point detector.
6.5.4. The Tilted Strut. The value of $A\left(\theta_{1}\right)$ calculated from the analytical expression is about three orders of magnitude larger than that calculated by the PADE program under the same conditions. At first, it was thought that one of the calculations must be in error. However, it turns out the discrepancy is due to the fact that the tllt of the strut was not taken into account in the analytical solution.

Tliting the strut or aperture plane is equivalent to a rotation of the incident and observation points. Let w be the angle of rotation of the strut.

Flg. 43. Coordinate System Rotation.

Then the new coordinate system is related to the old by:

$$
\begin{align*}
& x^{\prime}=x \tag{65}\\
& y^{\prime}=y \cos w-z \sin w \tag{66}\\
& z^{\prime}=y \sin w+z \cos w \tag{67}
\end{align*}
$$

The new direction cosines in terms of the or:ginal off-axis and azimuthal angles become:

$$
\begin{align*}
& \alpha=\sin \theta \sin \phi \tag{68}\\
& \beta=\sin \theta \cos \phi \cos w-\cos \theta \sin w \tag{69}\\
& \gamma=\sin \theta \cos \phi \sin w+\cos \theta \cos w \tag{70}
\end{align*}
$$

and the condition for an on-axis detector being at the peak of the long spike is again

$$
\begin{equation*}
B=\theta_{1} \text { with } \theta=0 \tag{71}
\end{equation*}
$$

this becomes

$$
\begin{equation*}
-\sin w=\sin \theta_{i} \cos \phi_{i} \cos w-\cos \phi_{i} \sin w \tag{72}
\end{equation*}
$$

or

$$
\begin{equation*}
\cos \phi_{1}-\frac{\sin w\left(1-\cos \phi_{1}\right)}{\cos w \sin \phi_{1}}=-\tan w \operatorname{can}\left(\phi_{1} / 2\right) \tag{73}
\end{equation*}
$$

Therefore, the source azimuthal angle at which this would oceur is a function of both the tilt of the strut and the off-axis angle:

$$
\begin{equation*}
\phi_{1}=\cos ^{-1}\left[\tan ^{2} \cdot \tan \phi_{1} / 2\right] \tag{74}
\end{equation*}
$$

for $\theta=5^{\circ}$ and $w=68^{\circ}$

$$
\begin{equation*}
\phi_{1}= \pm 96.2^{\circ} \tag{75}
\end{equation*}
$$

The spike has shifted about 6° in azimuth due to the tilt of the strut and no longer forms a straight line since $\phi_{i}^{+}-\phi_{i}^{-}$\& $180 .{ }^{\circ}$

The PADF calculation was redone using the azimuthal angle determined precisely from the above formula and the value of $A\left(\theta_{1}\right)$ agreed closely with the analytical result.

6.6 CONCLUSIONS AND RECOMMENDATIONS

The diffraction due to the circular aperture is in most instances " helow the specification. However, the diffraction spikes from the struts are well above the spec's. Also their spatial characteristics will make them hard to differentiate from astronomical point sources. A possible solution to the strut problem is to serrate their edges in order to break
up the phase astition across them. This is, in effact, an apodiaation technique which will not reduce the total energy diffracted by the strut, but will redistribute it in a smoothis manner.

Fig. 44. Apodization with Serrated Edges.
The transmission function is effectively tapered such that $A(\theta)$ falls as $(\sin \theta)^{-4}$ instead of $(\sin \theta)^{-2}$ along the spike. A more detalied calculation ${ }^{20}$ could be carried out to precisely determine what will be gained by serrating the struts.

If the stop of the system Is shifted to the secondary mirror, the strut diffraction is unaffected. However, this should result in lowering the circular diffraction by making second order diffraction takeover at a smaller off-axis angle. The exact effect is hard to estimate since there is a possibility that more diffracting edges, i.e., the main baffle vanetips, might start to contribute. A more detailed calculation is needed.

7.0 COMBINED SCATTER ANO D!FFRACTION RESULTS

The combined affects of scatter and diffraction are shown in Figs. 45 to 49. Tables 13 to 17 show the $A(0)$ values and percentages due to each method of propagation. Only at vary large off-axis angles are the diffraction effects dominate, although they are significant at some other angles in some of the bands. These results do include the diffraction from the struis. However, these offaxis anglas are in the meridional plane (azimuth $=180^{\circ}$), on the earth's side of the sunshield.

For certain azimuthal positions the diffraction'from the struts will cause locally high peaks in the $A(\theta)$ values, which are not accounted for in these figures.

7.1 DIFFRACTED, THEN SCATTERED RADIATION

The effect of radiation which is first diffracted to and then scattered from the critical objects (secondary baffle and aperture stop) was not directly evaluated. However, an analysis of the APART and PADE outputs indicate the following:

1. Diffraction, then scatter, effects at 25° off-axis is not a significant propagation path (less than 1\%).
2. Diffraction-scatter effects at 60° are comparable to or higher (10x) than the multiple scatter effects.

These results are preliminary and are based on the average incident irradiance, at the apertures or critical objects, which can vary considerably due to obscurations. It is possible that this typ of propagation will be of some significance at angles greater than 40° where three consecutive black scattering surfaces are involved.

Fig. 45. 0.4-0.9 Band, Scatter and Diffraction Combined.

Fig. 46. 8 - 15y Band, Scatter and Diffraction Combined.
Table 14. 8-15 $\boldsymbol{\mu}$ Band Scatter and Diffraction.

	5	16	17	24	30	60	88
Diffraction	1.3E-3	3.2E-5	1.3E-6	1.8E-8	1.E-8	1.3E-9	5.E-10
5\% Diffuse	3.7E-2	8.8E-4	3.3E-4	9.5E-5	1. IE-5	$4.2 E-8$	1.5E-11
$[$	3.8E-2	9. 1E-4	3.3E-4	9.5E-5	1.1E-5	4.33E-8	5.15E-10
\% Diffraction	4.	4.	0.	0.	2.	3.	97.
\% Scatter	96.	96.	100.	100.	100.	97.	3.
Martin Black	2.9E-2	1.9E-2	3.04E-5	1.4E-5	7.7E-6	8.2E-10	3.2E-13
Σ	3.03E-2	1.9E-2	3.17E-5	1.4E-5	7.7E-6	2. 12E-9	5.0E-10
\% Diffraction	4.	0.	4.	0.	0.	61.	100.
\% Scatter	96.	100.	96.	100.	100.	39.	0.

Fig. 47. 15 - 30 Band, Scatter and Diffraction Combined.
Table 15. 15-30 1 Band Scatter and Diffraction.

	5	10	17	24	30	69	88
Diffraction	2. E-3	1.E-4	4. E-6	8. E-8	4. E-8	5.E-9	1.6E-9
5\% Diffuse	3.7E-2	8.8E-4	2.7E-4	9.5E-5	1.03E-5	4.2E-8	3.5E-11
Σ	3.9E-2	9.8E-4	2.7E-4	9.5E-5	1.03E-5	4.7E-8	1.6E-9
2 Diffraction	5.	10.	0.	0.	0.	12.	98.
\% Scatter	95.	90.	100.	100.	100.	88.	2.
Martin Black	2.9E-2	1.9E-2	2.5E-5	1.4E-5	7.6E-6	8.2E-10	3.2E-13
Σ	3.1E-2	1.9E-2	2.9E-5	1.4E-5	7.64E-6	8.8E-9	1.6E-6
\% Diffraction	6.	0.	14.	0.	0.	86.	100.
\% Scatter	94.	100.	86.	100.	100.	14.	0.

Fig. 48. 48-81 Band, Scatter and Diffraction Combined.
Table 16. 48-81u Band Scatter and Diffraction.

Fig. 49. 87-118 Band, Scatter and Diffractiun Combined.
Table 17. 87-118u Band Scatter and Diffraction.

${ }^{-8}$	5	10	17	24	30	60	88
Diffraction	1.E-2	1. E-3	8. E-5	2. E-6	1.E-6	1.E-7	$3.2 E-8$
5\% Diffuse	3.7E-2	8.8E-4	2.6E-4	'9.5E-5	1.1E-5	4.2E-8	1.5E-11
Σ	4.7E-2	1.9E-3	3.4E-4	9.7E-5	9.9E-5	1.4E-7	3.2E-8
- Diffraction	21.	53.	24.	2.	$1:$	71.	100.
\% Scattering	79.	47.	76.	98.	99.	29.	0.
Martin Black *10	2.9E-1	1.9E-1	7.2E-4	7.2E-4	6.9E-4	8.2E-7	3.2E-10
Σ	3. OE-1	1.9E-1	8.0E-4	7.2E-4	6.9E-4	9.2E-7	3.2E-8
\% Diffraction	3.	0.	10.	0.	0.	11.	99.
3 Scattering	97.	100.	90.	100.	100.	89.	1.

8.0 SUMMARY AND CONCLUSIONS

The stray-light analysis comparison with PE shows very strong agreement, even though the resolution and number of surface elements were more elaborate in the present analysls to account for many fine structures in the system. There is a considerable difference in the $A(0)$ when - 5% diffuse is compared to Martin's black coating. The $A(\theta)$ values are usually lower with Martin Black; the exception being at 10°.

The forward scatter off the secondary baffle, the backscatter off the aperture stop and diffraction from the aperture stop, secondary baffle, and the struts are the major contributors of unwanted energy.

The primary scattering object, which causes the $A(0)$ values to be higher then the spac line, is the forward scatter off the secondary baffle. This requires a redesign. There are two cholces possible:

1. Shift the stop location to the secondary mirror. The forward scatter path would be eliminated. In addition, the scatter path from the original stop and structures would also be eliminated along with the diffraction offects from the present aperture stop. The diffraction contribution from the secondary mirror (the new stop) would increase some, but it will not be as much as the present values from the stop near the primary. This is the recommended solution. The expected result is an estimated decrease in the $A(0)$ value by a factor of 100 .
2. Redesign the secondary baffle. DE originally recommended a more cylindrical design for the secondary baffle. This reconmendation is on sound principles and should have been implemented.

Oy making the baffle more cylindrical, one or two vanes can be used to block out almost all of the forward near-specular scatter from the secondery--the major path at almost all angles.

Flg. 50. The More Cylindrical Secondary Baffle.

The direct back scatter to the detectors can also be reduced by having the Incident energy fall on the cylindrical wall which is out of the field of view of tine detectors.

This change will not alter the backscatter from the aperture stop nor its diffraction effects. However, diffraction is a major problem only at large off-axis angles, and aperture backscatter is a problem only in the 17° to 24° range.

It should be obvious that both improvements are desirable. The result of making both changes would leave the diffraction from the secondary baffle and the spikes from the struts as problem areas. As discussed in the section on diffraction, these are localized effects. Also, it may be possible to dissipate the energy in the spike over a broader collector area. It would probably keep the diffracted energy at least closer to the spec line if not below it.

The overall design is not an optimum one for stray-light suppression; Cassegrain designs saldom are. In an ideal baffled system, the detectors see only the imaging surfaces and the cavity in its immediate location. which doas not recelve significant amounts of unwanted energy. This usually involves some type of reimaging system, with field stops and Lyot stops. Then the $A(0)$ values are determined by 3rd order diffraction (and higher) or by scater from the imaging elements.

The following has been reserved for last with hopes that it would carry the greatest lasting Impact. The BRDF values used were taken at 10.6μ and extrapolated to 120μ. Over this range the "hemispherical diffuse" has increased by more than a factor of 20 . It is highly unlikely that the BRDF profiles remaln anywhere near constant over this range. It is STRONGLY recommended that high priority be placed on having BRDF measurements made at long wavelengths; both on Martin Black and on the mirrorsi Then the values used and calculated in this report can be related to the measured data to determine the actual performance of the system at the long wavelengths.

REFERENCES

I. Statement of Work \$2-27282, dated April 27, 1978, for contract award NAS2-9966, Issued by NASA-Ames Research Center.
2. IRAS Specification \#2-26412
3. APART I Input data from R. J. Noll, PerkIn-Elmer letter no. 78-1RAS-157, Mag 12, 1978.
4. Noll, R. J., letter \#78-IRAS-157 from Perkin-Elmer.
5. Infrared Astronomy Satellite (IRAS) Optical Subsystem (OSS) Off-axis Rejection Analysis, Perkin-Elmer Report No. 13616, Norwalk, Conn.
6. Ibid.
7. IbId.
8. Georgia Tech Eng. Dept. Measurement.
9. Measured Data on Emissivity of Martin Black.
10. Sunshade Configuration, W. P. Deveraux, Report No. IRAS. WPD. 8256, Ball Brothers Research Corp., 2-2-78.
II. Goodman, J. W., Introduction to Fourler Optics, MeGraw-Hill (1968) pg. 39.
12. Wolf, E., and E. W. Marchand, "Comparison of the Kirchhoff and the Rayleigh-Sommerfeld Theories of Diffraction at an Aperture," JOSA 54 (1964) pg. 587.
13. Sonmerfeld, A., Optics, Academic Press (1954) pg. 249.
14. Wolf, E. . and M. Born, Principles of Optics, Pergamon Press (1975) pg. 449.
15. Rubinowicz, A., "The Mlyamoto-Wolf Diffraction Wave," Progress in Optics, Vol. IV, J. Wiley e Sons (1965) pg. 205.
16. Papoulis, A., System and Transforms with Application in Optics MeGraw-HIII (1968) pg. 222.
17. Perkin-Elmer Corp. GUERAP II User's Guide SAMSO TR 73-309 (1974) pg. 56.

REFERENCES, Cont.

18. Gasklll, J. D., Linear Systems, Fourier Transform and Optics, J. Wiley 6 Sons (1978) pg. 375.
19. Harvey, J. E., Lioht-scattering Characteristics of Optica! Surfaces, Ph. D. dissertation, University of Arizona (1976) pg. 30.
20. Peters, P. J. "Aperture Shaping - A Technique for the Conirol of the Spatial Distribution of Diffracted Energy," SPIE Proc. Vol. 107 (1977) pg. 63.

APPENDIX A

A. 0 SURFACE SCATTER MODELS

A. 1 MIRROR SCATTER

The mirror scatter model used by Perkin-Elmer is

$$
\begin{equation*}
\text { BRDF }=\frac{1.75 \times 10^{-5}}{0} \tag{A-1}
\end{equation*}
$$

where θ is expressed in radians. This model has a 0^{-1} dependence on the scattering angle. This model yields satisfactory results at the 10.6μ wavelength as it tends to parallel other measured data we have seen. The θ dependence, however, changes with samples and wavelength. The shape of - typical scattering function also changes with the θ as can be seen in Fig. Al. Here, we notice that the scattering function becomes asymmetrycal with incidence angle. The asymmetry can be removed when the data is replotted in a new coordinate set α, β, as shown below. The α, β coordinates and the measurement hemisphere is illustrated in Fig. A2. It has been shown by Harvey (1976) that scatter data from smooth samples is IInear-shift invariant and can be plotted as a single profile of the BRDF in $B-\beta_{0}$ space. We have taken the PE mirror scatter model and replotted it in $8-\beta_{0}$ with their λ^{-2} scaling to use as the visible wavelengths BRDF (Fig. A3).

In our analysis, we have used PE's BRDF only scaled to the Harvey type $\beta-\beta_{0}$ plot, however, we feel that it has several shortcomings. first, the wavelength scaling does not fit with the dependence they have chosen. Harvey has derived a scaling law which accounts for the magnitude and the grating effect (i.e., narrow-angle scatter at short wavelengths is a

Fig. Al. Illustration of the Importance of the Coordinate System within which the Scattering Process is Discussed.
(a) Relative intensity plotted vs. scattering angle.
(b) Scisttering function plotted vs. $\beta-\beta_{0}$.

Fig. A2. Geometrical Configuration of Two Principal Planes in whi. .h the Scattered Light Fleld was Sampled.

Fig. A3. BRDF of the Mirrors Used by APART.
predictor of wide-angle scattering at longar wavelengths). The scaling law is

$$
\begin{equation*}
s(a, \beta ; \beta \lambda)=\frac{1}{a^{4}} s\left(\frac{a}{a}, \frac{\beta}{\beta} ; \lambda\right) \tag{A-2}
\end{equation*}
$$

where "a" is the wavelength change of the sceling. From this form, one can derive a λ scaling law that is a function of the slope of the BRDF as expressed in $\beta-\beta_{0}$ space;

$$
\begin{equation*}
S=\left(B-\beta_{0}\right)^{m} \quad m \text { is the slope of the BRDF curve } \tag{A-3}
\end{equation*}
$$

from the scalling law,

$$
\begin{align*}
& S(a \beta)=\frac{1}{a^{4}}\left(\frac{\beta-\beta_{0}}{a}\right)^{m} \\
& S(a \beta)=\frac{1}{a^{4+m}} \quad\left(\beta-\beta_{0}\right)^{m} \\
& S(a \beta)=\frac{1}{a^{4+m}} \quad S(\beta) \tag{A-4}
\end{align*}
$$

Thus, for the Perkin-Elmer slope of θ^{-1}, the scaling law should have been $1 / \lambda^{3}$. We feel, however, that the slope of the BRDF curve should have been more like $\theta^{1.8}$ to θ^{-2} which yields a scaling law of $1 / \lambda^{2}$. This slepe is more in line with those that we have seen for visible scattering data. The effect of using PE's scaling law is that the visible BRDF's seem to be pessimistic for near and large-angle scattering (Fig. A4). With the analysis of the IRAS system based upon these scattering BRDF's, any tests on a real model will be subject to the BRDF's of the mirrors actually used and may vary considerably with the analysis presented here.

Fig. A4. BRDF at Visible Wavelengths as Arrived at by PE Scalling Law and λ^{-2} Scaling Law.

When scaling to longer wavelengths, another offect of the scaling may occur; the roll-off or "shoulder" to the BRDF curve may be shifted to larger angles for much longer wavelengths. The roll-off is usually not seen for visible and near IR wavelengths, because it occurs at very small angles (Fig. A5), but could be shifted far enough over to be plcked up at the much longer IR bands. The only effect of this would be to lower the mirror scattering even more than the λ^{2} wavelength scaling law suggests. At longer wavelengths the mirror-scatter contribution is neg* ligible at most source'angles, so this effect would mak: the mirror's contribution even less. Flgure A6 Illustrates the shoulder that is observed on some mirror samples.

A. 2 black surface scatter

Perkin-Elmer used a 5% Lambertian reflectivity for their analysis. We have repeated the analysis with that reflectivity as well as using a mathenatical model of Martin Black for comparison. The Martin Black model is based upon measured data on several samples. The key difference between a Lambertian model and the Martin Black model is that the real surfaces have higher BRDF's for non-normal incidence angles than do Lambertian surfaces.

This difference can have profound effects on the resultant scaytered light in asystem, depending on the scattering angles and vanes used on the baffles. Differences of up to two orders-of-magnitude have been noted on previous analyses where the two scattering models have been used. The use of the 5% diffuse model is an attempt to account for this large forward scattering, but yields pessimistic results when used for

Fig. A5. Diagram lllustrating the Effects of the Wavelength Scaling Law.

Fig. A6. Roll-off Region Shifted to Larger Angles when Wavelength is Larger.
scattering from near-normal surfaces. At near-normal angles of incidence Martin Black has an equivalent reflectivity of 0.5% instead of the 5% that the PE data would suggest.

Datalls of the Martin Black Scattering Model

The scattering model is based on massured data from two Martin Black samples (Figs. A7 and A8). The backscatter is modeled as Ilnear in B-B. space with an urdinate value predicted by the following equation for $\beta-\beta_{0}=0.01$

$$
\begin{equation*}
\text { BRDF }={ }_{10}\left[3 \cdot\left(e \frac{-|0-\pi / 2|^{3.5}}{1.28}-1\right)\right] \tag{A-5}
\end{equation*}
$$

The slope of the backscatter curve is determined by a minimum BRDF input for the $B-B_{0}=1.0$. This same slope is also used for the linear fall-off In a of α, β space.

The magnitude of increase in the BRDF for forward-scattering angles as a function of the incident angle θ, is:

$$
\begin{equation*}
\log (\triangle B R D F)=0.2+0.6\left(\frac{\theta_{1}}{\pi / 2}\right)^{4} \tag{A-6}
\end{equation*}
$$

on increasing function with θ_{j}. The functional form of the forward scatter from the $\beta-\beta_{0}=0.01$ to the maximum forward scatter angle is a quadradric function fit to the two end points:

$$
\begin{equation*}
\operatorname{BRDF}\left(\beta-\beta_{0}\right)=\operatorname{BRDF}\left(\beta-\beta_{0}=0.01\right)+\left[0.2+0.6\left(\frac{\theta}{\pi / 2}\right)^{4}\right] *\left[\frac{\beta-\beta_{0}}{1-\beta_{0}}\right]^{2} ; \text { for } \alpha-\alpha_{0}=0 . \tag{A-7}
\end{equation*}
$$

An artist's conception of the surface contours of this rather complicated scattering function is shown in Fig. A9 for a 0 , of about 30°. A new three-dimensional scattering function is formed for each incident

Note: The forward scatter characteristics of this sample were used in the APART Martin Black model

1. $E+1$
1.E+0
喈
1.E-1
1.E.2
1.1.3

-2.7

Fig. A7. Martin Black BRDF Data. ${ }^{3}$ Helium-Neon 6328A.

Fig. A8. University of, Arizona 10.6μ Measurements of Martin Black.

Fig. Ag. Three-dimensional BRDF Model for Martin Black.
angle on surface. Whan the Martin Black model is used in APART, this function is calculated for ach previous source:source:collector comblation. The ERDF as calculated by the APART model is plotted for several $\theta_{\text {; }}$ in Fig. Alo.

Fig. AlO. BRDF of Martin Black Model.

APPENDIX 0

B. 0 COMPARISON OF BOUNDARY WAVE AND STATIOHARY PHASE RESULTS WITH CLASSICAL DIFFRACTION SOLUTIONS.

The following analytical results were derived during the development of the PADE program for the purpose of comparing the results of the theory on which it is based with more established methods. Some of the solutions were also used as test cases for debugging the computer code. B. 1 THE SEMI-INFINITE PLANE (STRAIGHT EDGE)

There are very fow closed form rigorous solutions of Maxwell's equations. One such is Sommerfeld's solution of the perfectiy conducting, infinitely thin, semi-infinite sheet. The geometry and angle definitions are shown In Fig. BI

Fig. Bl. Polar Coordinate System for Semi-infinite Plane.

The 2 -component of the electric field at the observation point is given by:

$$
\begin{equation*}
u(r, \phi, \alpha)=U(r, \phi-\alpha) \mp u(r, \phi+\alpha) \tag{B-1}
\end{equation*}
$$

where

$$
\begin{equation*}
U(r, \psi)=\frac{1-1}{2} \int_{-\infty}^{\rho} e \frac{i \pi r^{2}}{2} d \text { and } \rho=2 \sqrt{\frac{k r}{\pi}} \cdot \cos \frac{\psi}{2} \tag{B-2}
\end{equation*}
$$

The first term represents the diffrection of the incident wave while the second term is due to the reflected wave. The minus sign is taken when the incident electric field vector is parallel to the plane of the sereen. The plus sign corresponds to a polarization perpendicuiar to the sereen.

For $r \gg \lambda$, the fresnel integral U can be accurately represented by the first term of its asymptotic expansion. This is equivalent to applyIng the method of stationary phase to U. As a result, the total field u cen be split into a geometrical and diffracted component, l.e..

$$
\begin{equation*}
u=u_{G}+u_{D} \tag{8-3}
\end{equation*}
$$

where

$$
u_{G}= \begin{cases}e^{-i k r \cos (\phi-\alpha)}-e^{-i k r \cos (\phi+\alpha)} & 0 \leq \phi<\pi=a \tag{B-4}\\ e^{-i k r \cos (\theta-\alpha)} & \pi-\alpha<\phi<\pi+\alpha \\ 0 & \pi+\alpha<\phi \leq 2 \pi\end{cases}
$$

and

$$
\begin{equation*}
u_{D}=\left[\sec \left(\frac{\phi-a}{2}\right) \mp \sec \left(\frac{\phi+a}{2}\right)\right] \cdot \frac{1}{4} \sqrt{\frac{2}{\pi k r}} e^{1(k r+\pi / 4)} \tag{B-5}
\end{equation*}
$$

It was this result that led Rubinowicz to seek a rigorous splitting Into geometrical and diffracted components of the general sealar Kirchhoff field. How does his boundary wave result compare with the Sommerfeld solution? To nake this comparison, one must realize that Kirchhoff theory deals with "black" or perfectly absorbing and not perfectly conducting or reflecting screens. By neglecting the effects of the reflected wave, the Sommerfeld solution can be modified for a "black" screen to yield:

$$
u_{G}=\left\{\begin{array}{lr}
e^{-i k r \cos (\phi-\alpha)} & 0<\phi<\pi+\alpha \tag{B-6}\\
0 & \pi+\alpha<\phi<2 \pi
\end{array}\right.
$$

$$
\begin{equation*}
u_{D}=\sec \left(\frac{\phi-a}{2}\right) \frac{1}{4} \cdot \sqrt{\frac{2}{\pi k r}} e^{1(k r+\pi / 4)} \tag{8-7}
\end{equation*}
$$

Note that the field is now independent of incident polarization.
The corresponding boundary wave solution contains the same geometrical field. However, the diffracted field is given by:

$$
\begin{equation*}
u_{D}=-\frac{1}{4 \pi} \int_{-\infty}^{\infty} \frac{e^{i k r}(\hat{r} \times \hat{p}) \cdot \hat{z}}{4 \pi r(\hat{l}+\hat{r} \cdot \hat{\rho})} d z \tag{B-8}
\end{equation*}
$$

which can be approximated by applying the method of stationary phase:

$$
\begin{align*}
u_{D} & =\frac{\sin (\phi-\alpha)}{4 \pi r \cos (\phi-\alpha)} \cdot \sqrt{\frac{2 \pi r}{k}} e^{I(k r+\pi / 4)} \\
& =-\tan \left(\frac{\phi-\alpha}{2}\right) \cdot \frac{1}{4} \sqrt{\frac{2}{\pi k r}} e^{I(k r+\pi / 4)} \tag{B-و}
\end{align*}
$$

The two solutions differ by only an obllquity factor which is a function of the angle from the incident direction:

$$
\begin{equation*}
\delta=\phi-\alpha \tag{B-10}
\end{equation*}
$$

Figure 82 is the plot of the two obliquity factors as a function of the diffraction angle δ.

Fig. B2. Comparison of Sommerfeld and Boundary-wave Obliquity Factors.

Coth solutions go to infinlty at the boundary of the geometrical field. The blggest difference between the magnltudes of the two solutions occurs In the "back" diffraction direction, l.e., $6=0$.
B. 2 near-field on-axis diffraction from a clicular aperture (OR OBSTACLE).

Even when one proceeds to a scalar theory, exact closed form solutlons of diffraction problems are far and few between. In most cases the fresnel or Fraunhofer approximations must be employed. One geometry that permits one to carry out the integration is when a circular aperture Is Illuminated by plane wave incident normal to the aperture and the observation point lles on a line normal to the aperture that passes through its center.

Flg. B3. Rotationally Symmetric Geometry for the CIrcular Aperture.

The total diffraction field is found by Integrating Kirchlioff's formula over the area of the aperture.

$$
\begin{equation*}
u=\frac{1}{4 \pi} \iint_{A}\left[\frac{e^{i k r}}{r} \frac{\partial u}{\partial n}-u \frac{\partial}{\partial n} \frac{e^{l k r}}{\cdot r}\right] d \sigma \tag{8-11}
\end{equation*}
$$

For this particular geometry this reduces to:

$$
\begin{equation*}
u=\frac{1}{2} e^{i k z} \int_{0}^{0} \frac{e^{i k r}}{r}\left[\frac{2\left(i k-\frac{1}{r}\right)}{r}-1 k\right] \rho d \rho \tag{B-12}
\end{equation*}
$$

After some work and Integrating by parts:

$$
\begin{equation*}
u=e^{i k z}-\frac{1}{2}\left(1+\frac{2}{d}\right) e^{i k d} \quad d=\sqrt{a^{2}+z^{2}} \tag{B-13}
\end{equation*}
$$

The interesting thing to note here is that this rigorous scalar result ands up to be the sum of the incident wave and a wave that appears to originate from the edge of the aperture.

This result can be obtained with a lot less work by using the boundary wave formulation. The fleld is now given by

$$
\begin{equation*}
u=u_{G}+u_{D}=e^{I k z}+u_{D} \tag{B-14}
\end{equation*}
$$

where

$$
\begin{align*}
u_{D} & =-\frac{1}{4 \pi} \int_{0}^{2 \pi} \frac{e^{i k r}}{r} \frac{(\hat{r} \times \hat{\rho}) \cdot R}{(1+\hat{r} \cdot \hat{\sigma})} a d \theta \\
& =-\frac{1}{4 \pi} \frac{c^{i k d}}{d} \frac{a / d}{(1-a / d)} a \int_{0}^{2 \pi} d \theta \\
& =-\frac{1}{2} \frac{a^{2}}{d^{2}(1-2 / d)} e^{i k d} \tag{B-15}
\end{align*}
$$

Therefore

$$
\begin{equation*}
u=e^{i k z}-\frac{1}{2} \frac{a^{2}}{d^{2}(1-z / d)} e^{i k d} \tag{8-16}
\end{equation*}
$$

This does indeed agree with the previous result since it can be shown that

$$
\begin{equation*}
\frac{a^{2}}{d^{2}(1-z / 1 d)}=\left(1+\frac{z}{d}\right) \tag{8-17}
\end{equation*}
$$

It is worth noting at this point, that a different result would be obtained if the Reylelgh-Sommerfeld theory was employed. In this case:

$$
\begin{equation*}
u=e^{i k z}-\frac{z}{d} e^{i k d} \tag{B-18}
\end{equation*}
$$

Agoin the only difference is in the obliquity factor of the edge diffracted wave.

Flg. 84. Comparlson of Fresnel-Kirchhoff and RayleighSommerfeld Obliquity Factors.

However, experimental measurements on relatively large apertures Indicate " that the KIrchhoff result is more accurate than the Rayieigh-Sommerfeld, even though the Kirchhoff theory is mathematically inconsistent.

It is now a trivial matter to obtain the field from a clrcular obstacle using the boundary wave formulation. With $u_{G}=0$, it follows that

$$
\begin{equation*}
u=u_{D}=-\frac{1}{2}\left(1+\frac{2}{d}\right) e^{i k d} \tag{B-19}
\end{equation*}
$$

The relative irradiance is equal to the squared modulus.

$$
E=\frac{1}{4}\left(1+\frac{z}{d}\right)^{2}
$$

Therefore, the on-axis point behind a circular obstacle is always bright, as is well-known from observation. However, for the circular aperture, the irradiance at the on-axis point will go to zero at certain locations due to the interference of the incident field with the edge diffracted wave.

B. 3 FAR-FIELD ON-AXIS DIFFRACTION FROM OBLIQUELY ILLUMINATED APERTURES

Wide-angle, far-field diffraction can be accurately described using the angular spectrum approach. If $a(x ; y)$ is the aperture transmittance at $2=0$, then

$$
\begin{equation*}
u=\frac{\gamma+\gamma_{i}}{2} \frac{e^{i k r}}{i \lambda r} A\left(\alpha-\alpha_{i}, \beta-\beta_{i}\right) \tag{B-2I}
\end{equation*}
$$

and

$$
\begin{equation*}
A(\xi, \eta)=\iint_{-\infty}^{\infty} a(x, y) e^{-i k(\xi x+n y)} d x d y \tag{B-22}
\end{equation*}
$$

and (a, β, y) are the direction cosines of the observation point and (a_{j}, B_{j}, Y_{j}) of the intersection of the incident ray through the center of the aperture with the observation hemisphere of radius r.
B.3. 1 The Rectangular Aperture.

For a rectangular aperture, the transmission function is:

$$
\begin{equation*}
a(x, y)=\operatorname{RECT}\left(\frac{x}{\Delta x}\right) \cdot \operatorname{RECT}\left(\frac{y}{\Delta y}\right) \tag{B-23}
\end{equation*}
$$

therefore
where

$$
\begin{align*}
& A(\xi, n)=[\Delta x \cdot \sigma \operatorname{lnc}(\Delta x \xi / \lambda)] \cdot[\Delta y \cdot \operatorname{sinc}(\Delta y \eta / \lambda)] \tag{B-24}\\
& \operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x}
\end{align*}
$$

The field is:

$$
\begin{equation*}
u=\frac{\left(\gamma+\gamma_{j}\right) \Delta x \Delta y}{2 i \lambda r} e^{i k r} \cdot \operatorname{sinc}\left[\Delta x\left(\alpha-\alpha_{i}\right) / \lambda\right] \cdot \operatorname{sinc}\left[\Delta y\left(\beta-\beta_{1}\right) / \lambda\right] \tag{B-25}
\end{equation*}
$$

Consider the simplified geometry of fig. 85.

Fig. B5. Obllquely Illuminated Rectangular Aperture.
where $\quad\left\{\begin{array}{l}\alpha=\alpha_{i}=\beta=0 \\ r=2 \\ r=1 \\ \beta_{1}=\sin \theta_{i} \\ r_{1}=\cos \theta_{i}\end{array}\right.$
Then, the expression for the field becomes

$$
\begin{equation*}
u=\frac{\left(1+\gamma_{1}\right) \Delta x}{12 \pi z \beta_{1}} \cdot \sin \left[k \beta_{i} \Delta y / 2\right] e^{i k z} \tag{8-27}
\end{equation*}
$$

Again, one can arrive at the same result without any complicated Integration by applying the boundary wave formulation. First, note that the ($\hat{i} \times \hat{\rho}$)- \hat{l} factor is zero for the two vertical edges, therefore they do not contribute to the diffracted field for this particular geometry.

For the top horizontal edge (II)

$$
\begin{align*}
(\hat{f} \times \hat{\rho}) \cdot \ell & =\sin \theta_{1}=\beta_{1} \tag{B-28}\\
\hat{r} \cdot \hat{\rho} & =-\cos \theta_{1}=-\gamma_{1} \tag{B-29}\\
r+\theta & =z+\beta_{1} \Delta y / 2 \tag{B-30}
\end{align*}
$$

Its contribution to the diffracted field is:

$$
\begin{align*}
u_{1} & =\frac{1}{4 \pi} \int_{-\Delta x / 2}^{\Delta x / 2} \frac{e^{i k\left(z+\beta_{1} \Delta y / 2\right)}}{2} \frac{\sin \theta_{1}}{1-\cos \theta_{1}} d x \\
& =-\frac{\beta_{1} \Delta x}{4 \pi z\left(1-y_{1}\right)} e^{i k\left(z+\beta_{1} \Delta y / 2\right)} \tag{8-31}
\end{align*}
$$

Similarly for the bottom edge (\#2)

$$
\begin{equation*}
u_{2}=\frac{\beta_{1} \Delta x}{4 \pi z\left(1-\gamma_{1}\right)} e^{i k\left(z+\beta_{1} \Delta y / 2\right)} \tag{B-32}
\end{equation*}
$$

The total diffracted field is the sum of the contributions from the two edges.

$$
\begin{equation*}
u=u_{1}+u_{2}=\frac{\beta_{1} \Delta x}{12 \pi z\left(1-\gamma_{1}\right)} \cdot \sin \left(k \beta_{1} \Delta y / 2\right) e^{i k z} \tag{8-33}
\end{equation*}
$$

Using the fact that $\beta_{i}^{2}+\gamma_{i}^{2}=1$, one can show that $\frac{\beta_{1}}{1-\gamma_{i}}=\frac{1+\gamma_{1}}{\beta_{i}}$ and therefore the results of the two different methods are in exact agreement.

8.3.2 Circular Aperture

Fig. 86. Obliquely Illuminated Circular Aperture.

The transmission function is:

$$
a(x, y)=C Y L\left(\frac{\sqrt{x^{2}+y^{2}}}{R}\right)= \begin{cases}1 & \left(x^{2}+y^{2}\right)<R^{2} \tag{B-j4}\\ 0 & \left(x^{2}+y^{2}>R^{2}\right.\end{cases}
$$

Its transform

$$
\begin{equation*}
A(\xi, \eta)=\frac{R J_{1}\left(k R \sqrt{\xi^{2}+n^{2}}\right)}{\sqrt{\xi^{2}+n^{2}}} \tag{B-35}
\end{equation*}
$$

The diffracted field in the case of the geometry of the preceding section is therefore given by:

$$
\begin{equation*}
u=\frac{\prime\left(1+\gamma_{1}\right) R}{\sqrt{2 \pi z \beta_{1}}} J_{1}\left(k R \beta_{1}\right) e^{i k z} \tag{B-36}
\end{equation*}
$$

In order te do the boundary wave calculation, it will be necessary to apply the principle of stationary phase to the integral around the edge of the aperture. For a circular aperture, the points of stationary phase correspond to the intersection of the aperture edge with a plane normal to it that passes through the source point, the center of the aperture, and the observation point. In this case, the points of intersect lie in the $y-z$ plane. The two points of stationary phase are $(x, y)=0 \pm R)$.

We can now proceed as in the previous section by noting that:

$$
\begin{equation*}
u^{\prime \prime}(\ell)=\frac{d^{2}}{d \ell^{2}}(r+\rho)=\frac{B_{1}}{R} \tag{B-37}
\end{equation*}
$$

The contribution from the maximum o.p.d. point (\#1) is:

$$
\begin{equation*}
u_{1}=\frac{\beta_{i}}{4 \pi z\left(1-\gamma_{i}\right)} \sqrt{\frac{R \lambda}{\beta_{i}}} e^{i k\left[z+R \beta_{i}\right]} e^{-i \pi / 4} \tag{8-38}
\end{equation*}
$$

Similarly for the minimum o.p.d. point:

$$
\begin{equation*}
u_{2}=-\frac{\beta_{i}}{4 \pi 2\left(1-\gamma_{1}\right)} \sqrt{\frac{R \lambda}{\beta_{1}}} e^{i k\left[2-R \beta_{1}\right]} e^{i \pi / 4} \tag{B-39}
\end{equation*}
$$

The total field is:

$$
\begin{equation*}
u=u_{1}+u_{2}=\frac{\sqrt{\lambda R \beta_{1}}}{\sqrt{2 \pi z\left(1-\gamma_{1}\right)}} \sin \left(k R \beta_{1}-\pi / 4\right) e^{i k z} \tag{B-40}
\end{equation*}
$$

The two results are not in exact agreement but it can be shown that the second solution is a very good approximation to the first when $k R \beta_{;} \gg 1$. The Bessel function can be approximated quite well by the first term of its asymptotic expansion under this condition, le..

Fig. B7. Approximation to the First-order Bessel Function.

This combined with the fact that:

$$
\frac{1+\beta_{i}}{\sqrt{\beta_{1}^{3}}}=\frac{\sqrt{\beta_{i}}}{1-\gamma_{i}}
$$

transforms the first expression into the second.

8.3.3 Rotated Square Aperture

We will now treat the problem of a rotated square aperture. In particular, an aperture rotated 45° to yield a diamond.

Flg.*日8. Obliquely Illuminated Diamond Aperture.

In this case,

$$
\begin{align*}
A(0, n) & =\int_{-\infty}^{\infty} a(x, y) e^{-i k n y} d x d y \\
& =\int_{-\infty}^{\infty} \dot{a}(y) e^{i k n y} d y \tag{B-42}\\
\tilde{a}(y)= & \int_{-\infty}^{\infty} a(x, y) d x=S \sqrt{2} \cdot \operatorname{TRI}(y \sqrt{2} / S) \tag{B-43}
\end{align*}
$$

Therefore

$$
\begin{equation*}
A(0, n)=s^{2} \cdot \operatorname{sinc}^{2}[s n / \lambda \sqrt{2}] \tag{B-44}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.u=\frac{\left(1+\gamma_{i}\right) \lambda}{\pi^{2} 2 \beta_{i}} \sin ^{2} i k \beta_{i} s / 2 \sqrt{2}\right) e^{i k z} \tag{B-45}
\end{equation*}
$$

Again, we must use the method of stationary phase in order to solve th: problem by the boundary wave technique. However, there are no points on the edge of this aperture for which the optical path is a maximum or minimum. Therefore the dominant contribution to the integral comes from
the endpoints. Since the integration is broken up into four parts (one for each edge), there will be elght (8) different contributions to the Integral (two endpoints per Integral). Referring to Fig. B8, we find that for each endpoint:

Endpoint	$(\hat{r} \times \hat{\rho}) \cdot \hat{\ell}$	$(\hat{r}+\hat{\rho}) \cdot \hat{\mathbf{l}}$	$(r+0)$
1	$B_{1} / \sqrt{2}$	- $\beta_{i} / \sqrt{2}$	$2+\beta_{1} S / \sqrt{2}$
2	$B_{1} / \sqrt{2}$	- $\beta_{1} / \sqrt{2}$	2
3	- $B_{1} / \sqrt{2}$	- $\beta_{1} / \sqrt{2}$	2
4	- $B_{1} / \sqrt{2}$	- $\beta_{1} / \sqrt{2}$	$2-8, S / \sqrt{2}$
5	- $\beta_{i} / \sqrt{2}$	$B_{1} / \sqrt{2}$	2-8,S/V
6	- $B_{1} / \sqrt{2}$	$B_{1} / \sqrt{2}$	2
7	$B_{1} / \sqrt{2}$	$B_{1} / \sqrt{2}$	2
8	$B_{1} / \sqrt{2}$	$B_{i} / \sqrt{2}$	$Z+\beta_{1} S / \sqrt{2}$

Therefore

$$
u=\frac{\lambda e^{i k z}}{8 \pi^{2} z\left(1-\gamma_{i}\right)}\left[e^{i k \beta_{i} S / \sqrt{2}}-1-1+e^{-i k \beta_{i} S / \sqrt{2}}+e^{i k \beta_{i} s / \sqrt{2}}-1-1+e^{i k \beta_{i} s / \sqrt{2}}\right]
$$

Combining terms, ylelds

$$
\begin{equation*}
u=\frac{\lambda}{\pi^{2} z\left(1-\gamma_{1}\right)} \sin ^{2}\left(k \beta_{1} s / 2 \sqrt{2}\right) e^{i k z} \tag{B-46}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{1+\gamma_{1}}{B_{1}^{2}}=\frac{1}{1-\gamma_{1}} \tag{B-47}
\end{equation*}
$$

This agrees exactly with the angular spectrum calculation even though we have used the stationary phase approximation. It turns out that stationary
phase approximation as applied to the end points of the integration is the same as the IInear phase approximation used in the angular spectrum approach.

APPLNUIXC C

gevem M. lange, Romert V. Hreault, and Alan W. (ircymolds Gpilal sesence dolloter, thiversily ut Arizoma
Ticsom, Aritillia his 721

Abstract

Alse rict

Inirmluesion

The problem of amalycing scaftered radiation in a sensor syxtem is difficilt because of the multifitity of whact configuritiont among, which seatiered energy can be transforred and because of the variatholl of the neatcering characteristics of the surfaces. Any quantitative analysis of scateored oneray withil a system will involve an overwheimins number of calculations. One solution to this problem it to minimize she numder of cafculation* in a manier ehat develops user insighe into the scattering mechanisms involved in the syatem. Onc dues not wane just a mumer at the end of the analysis but also the hnowledge of the signifieant fictors involved that mike up the number and how system changes affect tho number. Alart was developed to separate the problum into a logical seyuence of procedures and culculations that develops user insighe for improve. ment of the system and so minimize the computational effort.

Overvieu

Scull Srom Imate

 obyeit: .fe sern rithor directly or in reflection, this calculation serves two functions: lipst, it wll

 Propgat divides the lenpth of the objects seen from the image into five sections and determines the ponition and amfile it which sach wection is seen. APART also outputs a two-dimensional printer plot of ehe whects as the) appar when projected olifo the ext pupil of the system. With the combination of these outpute, one call quickly determine the status of the design. Realesign can take place at this point in the amalysis at practidally no coit in the user.

He secoud function served by Program Dne is to find the "eritical" objeces. These are the objects ihat sentice directly to the image and will be the nources at the final level of scatter. Thus, they have a "critiont" effect on the system preformance. The second en the last level of scatter is also partially determand: stattered radiation will he traced only to these "eritieal" objects. the final determamition of the wotloring pothe iv the linhing of the ohjuces that receive the inithal unwanted energy to the critieal olijucts, or to surfaces thit scatter to the critieal ohjects. A "level of seateer" is a scatter, or set of seatcrs, whetshy rialiation is transfored to another ohject. The other object may be the same one soen in reflection or even another part of the same objoc:. Vane seructure on an object will alter the bumer of scators that wall mathe up ene level of seater. The soncept of tevels of seater is very important en the understiming: of Poogran Thrce echtion and will ly explained tureher under "Irogram Three Caleulations,"

 sall infied with the design as onalyzed so far, he miy contimue the AbMit analysis.

Imaging All ohjects in liach suace

The papose of this atep in the Apabt analyais is to identify the power eransfers to be calculated later

 clear whether an uhject cam eransfer power to mother through several opteieal clements, Prugram One helprs in

Mig. 1. How diagram of the Apart program.
Phi: detcrination by calculating the magnification and position of each objece as it appears from each space within a. \boldsymbol{y}.fom. The problam plots this information from cach space and, with the aid of atraight edge,

It iv mulh morre efictem to have the user select the objects that can be frradiated by the stray radia-
 the computer lifindy calculate every possible power fransfer. By manally selecting the power transfers, ome is doing a rash quite simple for a human, and avoiding a very difficult, lengethy calculation for the computer. The other adrantages in enis interaction are that much computer time is saved by limiting the number of power pransfers to le calculinted, and the user gains insight into which power transfers are possilte withon a system and which surfaces can most influence the energy reaching the image.

Y-Y Imaging Terhigige

Throughout frogram One and Two imagang calculations are needed. To do this imaging, APART uscs the firstoriler peometrical optics tool-the $y-\bar{y}$ diagram. $(1,2)$ the $y-\bar{y}$ technique is much faster than other geometricol opliatil technigues. It alinws the imaging of objects with a minimum of calculations regardless of the monker of intervemm: imaging clements. APAKT' must calculate the imaged location and the magnification of surfares and oliscurations to do the power transfer calculations. With the y-y technique, this is as simple as findang the intersection of tho lines and calculatiag an area. Consider the $y-\bar{y}$ diagram for a simple mirror or lens witi; the object at minus infinity and the stop at the optical elenent (Figure 2). The distances between platmes in the system, or points in the diagram, are given by the formula

$$
\begin{equation*}
s_{12}=n\left(y_{i} \bar{y}_{2}-\bar{y}_{1} y_{2}\right) / \beta_{k} \tag{1}
\end{equation*}
$$

where \mathcal{H}^{\prime} is the lagrimge invariant of the system and n is the index of refraction for the space in the
syspem or the llar in the dupram.
Imaged heipht are calculatid by com.irncting a "conjupate" line from the origin throuph she point to he

 valuen:

$$
\begin{equation*}
n=y^{\prime} / y \text { or } \bar{y}^{\prime} / \bar{y} . \tag{3}
\end{equation*}
$$

This techmique is valid for any objects in any nhace whith she syxtem. Thus, the imaning involvers gutioh
 to catrulas: when compared to miltiplication and diviaton,

Nig. 2. Y- \bar{Y} diagriam of a unc-mirror sysecm.

fig. 3. Imaging of point (y, \bar{y}) into spuce bile.

Power Transfer Calculations
Program tho calculates some of the factors leading up to the power transfer calculation in frogram lhres. Prcgram tho divides all of the objeces in the system into sections and if requested, into further sulinere tions. Alaki catculates the power transfor from these sections to sections through the system to ative it the total transforred energy.

Yower Transfor Liquations

The equation that reiates power iransfer from one section to another is

$$
\begin{equation*}
d P_{c}=\left\{L_{s}\left(\theta_{0} \phi\right) d A_{s} \cos \left(\theta_{s}\right) d A_{c} \cos \left(\theta_{c}\right)\right] / R_{s c}^{2} \tag{3}
\end{equation*}
$$

where dl_{c} is the incremental anount of power transferred, $\mathrm{L}(\theta, \phi)$ is the bldirectional radiance of the suurce section. ${ }^{c} d \lambda$ and $d \lambda$ are the elemental areas of ehe source find collector, θ and θ are the angles that the line of sight from the sourse to the collector mahes with the respective surface normals, and 0 and are the projected and dabmathat anglos.

Nhe total power bin the collecior section is found by the integration in clesad form of a double integral over the areas of the source and collector and then by the evaluation of the resultamt alpelorate vapres sion:

$$
\begin{equation*}
P_{c}=\int f\left(\left\|I_{s}(0, \phi) \cos \left(\theta_{s}\right) \cos \left(\theta_{c}\right)\right\| / h_{s c}\right) d \Lambda_{s} d \Lambda_{c} \tag{1}
\end{equation*}
$$

Alant does a manerical integration hy sumbividing the objects inte clemental sections that arve amall whell cospared to the distame between them. The fillegrals are evaluated as sums noer the sonde amd collertor sections:

$$
\begin{equation*}
\left.P_{c}=\sum_{\Lambda_{c}} \sum_{\Lambda_{s}}\left(\Lambda_{s}(0, \theta) \cos \left(0_{s}\right) \cos \left(\theta_{c}\right) \Delta \Lambda_{s} \Delta \Lambda_{c}\right) / R_{s c}^{2}\right) \tag{5}
\end{equation*}
$$

The biditectional reftectance distribution function (bkuF) is defined as

$$
\begin{equation*}
\operatorname{ARI} H\left(0_{i} \cdot \psi_{i} ; 0_{0} \cdot \theta_{0}\right)=\frac{l\left(\theta_{0}, \theta_{0}\right)}{1 \cdot\left(0_{i} \cdot \theta_{i}\right)} \tag{6}
\end{equation*}
$$

 ןкwer incident oin the source.
 gicids.

$$
\begin{equation*}
d P_{c}=\frac{L}{E}\left(U d A_{s}\right) \frac{\cos \theta_{s} \cos \theta_{c} d A_{c}}{R^{2}} \tag{7}
\end{equation*}
$$

Eynation (7) has been separated Into threo terms that can be rowritton as

$$
\begin{equation*}
d P_{c}=8 R D F d P_{s} \cdot G C F \tag{8}
\end{equation*}
$$

Onc can recognize the brisf [as defined in Equation (6)] and dr as the power on the Incremental source area anll a new term ralled the gconctrical configuration factor (ccif):

$$
\begin{equation*}
\boldsymbol{x} F=\frac{\cos \theta_{n} \cos \theta_{c} d A_{c}}{H^{2}} \tag{9}
\end{equation*}
$$

 gual ilative statuments call be mide:

1) When only the contings (HBDif) aro varicd to evaluate their effects on aystem, the G:I does noe change and it can be calculated once nind stored for sulsscquent analysis.
2) When the system is not changed and only the source off-axis angle is altered in the analysis, the CCl: remains fixed.
3) If en object in a system is altered in its size or shape, only transfers to or from this object, or eransfers where it was used as an abscuration will need to be recalculated.

Iropram Two calculates the CCF between all previously determined source-collectur cunhinations. Program Two ilso calculates und stores the anple information necessary for the calculation of the RROF in Program Ilirece. Thus, liy storing this information, the computer time to do a number of analyses of system is reduceil 1 rememiounly.

Progham To dividas objeces into pi sections and axjal, or 2 , sections. The reasons for this type of 1 : diviebum will letome apparent when aymetry rutes are used. The program could divide the ohjects into hun-

 come umb: a come can he hamaltod with as mich acturacy as destrod.

Fig. 1. Sections and subsections on a conc.

Syunctry Consislerations

hlu"n ohjects within a system are rotationally symmetrical about the optical axis, APART call use the sym-
 far finn pi ace on thace to pi scetion one involves only an angle sign change irom the pi section three to pi scition five eramsfer. fhis use of symetry eliminates $2 / 5$ of the calculations. Furthermore, the above

ABABI also uses this sane type of symmetry when calculating the subsection-to-subsection transfers. Sym-

(Haratrictitill:

 in essemt iatly the same naminer as inaged objects. The vector frum the source poilt to the collector point is utad th detcrmine the (x, y) intercept in the plane of an aperture or disk, where the interecpt must be resperifuly inside or nutside for power to pass. All obscurations are handled in binary minner for the transfer befween subsections to sulsections. However, the average over asection-to-section transfer wilt : result in a nore realistis determination of the shadow. Obstructing conical sections pose additional problems becanse of their three-dimensional character. A ray now has the possibility of being blocked, passing around the cone, or passing through the cone. If the ray passes through both ends of the cone, the ray is not obsiructed. Obviousily, if the ray passes through one end and not the other, it fails. for the last case of a ray passing outside both cone ends, a further cheek must be made: from the source point, two planes can be drawn tangent to the ohstructing colce, establishing a trapozoidal plane in space when intersected with the two conc ends. the ray is now checked for its position inside or outside of the trapezoid and, in conjunctioll with the other two tests, will determine the power transfer.

Now that the nuwer transfers have been identified and the fef and angle information for them calculated and , oned, the APARI amalysis necds to catculate the remalining terms in Equation (8) and determille the resultamt ectattor througherit the system.

Program Ihyce Calcilations

Iropram Three has two maill functions: to ealculato the numf for each section within the system for the anfle: neded and to calculate the power increments throughout the system. The resuit is the amount of power oll all uf the objects and insight into how this powicr got there.

Surface Scatter Calculations

AbMIt can accept hkifl values for a surface in a number of ways. First, actual data can be injut in a tibled form. The datis will be lincarly interpolated for the angles actualjy encountered in Propran Tirec. Second, the program can use any one of several models for the Binf of the surface. The accuracy and speed of the models over the table loohip approach depend upon the coating, the cost, and the time to make sufficient meisurcments to fill the table.

The simplest model for surface scatter is a Lambertian model. Here, one inputs the total hernispherical reflecivity of the surface as a coating type for the surfaces on which it is to te used. the Blifi term in Lumation (8) is a constant, and the calculation is finished. Because lambertian seatering necds mangular filformation in Program Threc, one can have Program lwo ignore the lengthy surface angle calculations for these trans fers, saving even more computer time.

Liboratory measurements of miryor surfaces have tended to indicate that a "smooth" mirror surface has a well-hehaved linear shift-ibvariant BRME function. (3) This function is linear when plotted on log-lng piper with the ordinate ieing the Rmb: and the athscissa being ($B-R_{0}$) where B is the sine of the angle of seatiering and B_{0} is the sinc of the specular angle. A typichl example is shown in figure G. The program models this

Hig. 6. ARIIF of an average mirtbr.
Ior rougher surfices that do not follow the linear shift-invuriant propertics obsorved on mirrors, there ir a model called "blachs." This routine also witizes data ploted for the llarvey shach mamer deseribed for the mineor aurlines ahove. thene types of coathgs are more simitar to diffuse black surfaces lihe Martm Hhach or SN Ilach Velver than they are to mirrors. Measured data fron these types of surfacen indicate that
 for the propgim model imblades a factor for the change in slope as a function of the facident angte and a
 for the limmert man model, and this model is fintended to be used as a final analysis tool for a very atceubite descriptione of asensor.
the addition of vanes to a surface is handled in a unique fashion. If to this point in the amalysis, all surfaces were treated as eylinders or disks. Cones that have vanes designed onto the baffecones are considured to be conical sections with the cone being located at the locus of vane tips. Vancs could he handled by luputting each side of a vanc as a disk, with a cylinder to separate the vanes. this would include a large number of objects in the $3 y s t e m$ and a tremencirus number of angle and cal calculations in Progrint Tho. Vanes, as hamlled hy APABt, need only one angle and CCF calculations per section. Program lhree hnows, for n given transfor, whit the angle into she surface and the ample out of de surface will be. For the vanced surfice, as well as any other model, the program eateulates the apparent reflectivity of the surfage for those angles. to hamble valled surfaces. Program fliree utilizes configuration factor geometry to calculate the power tramsfors within the vanes resulting in the BRBF of the vaned section. Thus, APART replaces a vaned object with an equivalent nonvaned surface that has an associated highly unsymetrical nubf. the input parancters necossary to describe a vaned surface include: the angle at which the vanes are thted, their depth betuw the locus of vane this, their spacing, their diffuse reflectivity, and their distance from the optical axis.

All vaned surfices will have edges on the vanes, and these edges are also handled in a unique manner. As was previously mentioncd. Wial hows the angle radiation is hitting a surface, and the angle radiation will leare the section on its way to the collector. Thus, for a toroidal edge, the illumilated and "seen" pant of the edge can be cobly calculated. The are length of the overlap can also be calculated. The are length. along with a correction fictor for the angle at which the illuninated portion of the edge is seen, is assumed to he a eybinder just as an the vand surfice catculation. An apparent reflectivity is calculited for the
 all chacs within asstem are calculated in a determanistic mamer. The input parameters for this surface

 jert

 the analyais in to hove the progran eycle through alt of the object's sections and acemulate the revalt from Bignation (8).

Pouse linerements

the remathing term in liquation (8) to be calculated is dis. To start the calculations in Program three,
 a goint incafed some distance from the enfrome port of the syatem, if one is seehbis to fud a polit sobrte
 Jects with power. Nore mohisticated lowier routines can lo written that will include unusual obscurations or other situastions not incladed in the general progrim.
the user must now enter the source-collector comblnitions hs a function of the levels of seater into Propram threc. Vor example, at level one scatter the sources will be the objects that liere loaded with the initinl power. The collectors at level one senter are all of the objects to which the sources can iransier power. The GCl:'s and angles for these transfers, as calculated in Program 7ro, must be recalled for this transfer calculition. The program will calculate dP for each source and collector section of the input rombinations. Lach increment of power reaching a colleftor section is stored separately and also is added after all pover from all sources has been calculated. Thus, at the end of a level of scatter calculations, the program will hive stored all increments of power to all the collectors and the cotal amount of power on each section of the collectors.

At the next level of seafter calculations, the above collectors will bevone sources. The sum of the increnents of pher on the collectors [lipuation (5) \mathfrak{j} will become the dp of rquation (8). This sequenee of calculations will continue until the image is a collector. The calculations can be carried out to a hipher devel of seatcor if one wishes, hut usually the energy reaching the imade at ehe higher lovel is consilerathly Duwer than that received at a lower leval of satter.
the sourte section may contribute inerements of power to the same collector section by several optical buthe (i.e., ditectly or by reflection). When this power is then acatiered fiom the collictor ato a ample directon punird asecond level collector, each increment of power bindent on the first collectur will com. irblute d different poportion of the seateded encrgy becanse of the diferent input angles. thas in hecalle the bibi is penerally angle dependent. Although the separate storage of these increnents of power in a ncressary and laborions tash, it is respunsibie for the user's insight into the system scatering methanivir:

The progratil can outpur a mip of the inerements of power reaching any ohject the user wishes. of puticu:
 contrbilor of puwer, onc tan tell at afance which sections on that eritioal objoct contributed the busp power. Tables 1 and 2 bllustrate some of the output from lrogram firce for two objects transferrang pumer to the image.

Talile 1. Pover on One Section of the Image Coming from the Main Tuhe
Thits objcet constdercd to the mage
This is the power on pi section 3 , 2 section 1

| | 0 | 0 | 0 | 0 | $0.185:-06$ | Total $=1.83 E-07$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 0 | 0 | 0 | Total $=0$ |
| | 0 | 0 | 0 | 0 | 0 | Total $=0$ |
| | 0 | 0 | 0 | 0 | 0 | Total $=0$ |
| Total | 0 | 0 | 0 | 0 | $0.181:-00$ | Total $=1.83 E-07$ |

Tutil nower fo this section is 3.67E-07

Table 2. Puwer on Dire Scetion of the Image Coming from the Primary Mirror
mis oljuef is consideralta the imge
mins j s the power on pi section 3,2 section 1

	0.381:-08	0.375.08	0.371-08	0.36L-08	0.351-088	Total	$=1.841 \mathrm{E}-08$
	0	0	0	0	0	Total	= 0
	0	0	0	0	0	Total	$=0$
	0	0	0	0	0	Total	$=0$
	0.381 .08	0.375-08	0.375.0s	0. 36.15	0.351.008	Total	$=1.845 .08$
Total	7.621 .09	7.961009	?, 30t-69	7.23009	7.10000		

butal puey to this ection is 3 , 6,81-08

Thure will be one array of this type for each aection of the lange and one group of arrays from all objects iramicriting power to it. The numbers in the arrays contain the inerements of power ancidunt on the imige

 the eritical olijects lie printed. In this manner, the usey call trace all of the seatecred radiatio.throughout the system and identify the radiation from the significunt paths followed to reach the inage.

The user, having identified tho important seateoring paths, now has nvailable the possible altermatives to Improve the system performance. First, one cun rerun only the significant patho and wary the surface coatIngs on the critical objects to determine their offects. It is important to realize that the addition of coatings or. vanes on a surface docs not masn that all of APART must be rerun with now input throughout, All chat must be done is to change one sard of the Program Three input dech and rerun Program Three. This seep can also be dove in the same job sequence by stacking runs. If the result of this step docs not result in sufficient system improvenent, one can consider the possibie redesign of the system to eliminate the sections of the eriplcul objects from the view of she image. Rerunning the Program one seall from the tmage will be helpful in this procedure. A third possibility is to alter the radiation incident on tho most inportant secetons of the critical objects, If the power reaching the critical sections call th lowered by system redesign or surface coatings, the power on the image likewise will be reduced. Thus, with the use of apart the user knows just which steps aro possjblo to alter the system performance.

Proginm Ouitput

There arc numerous ourput options availabic to the user of Progran Threc. The printing of the map of the power increments mentioned above is an example of a very detailed output. At the teraination of each fevel of scatter, a running sotat of the poter distribution on each ohject and the power incident at this level can he printed. lolluwing all of the levels of scatter, able of objects contributing power to the image can he output. This table lists the percent of the total energy reaching the image at each level of scatrer from cach object and the total power reaching the lmage at each level (Table 3). Thas percent table kives the uscr jnumediate illsight into which objects are prime contributors and at what level they are; however, the knowledge of which sections of these objects are the most significant is lost in this output.

Table 3. A Percent Table for 3 tevels of Scater
Percent of Power Contributed
by Each Object is a Function Each Scaetering lovel

Uljects	
1	Source
2	Main Tube
3	Out er Sccondary Raf
1	Innser Sucomdary
5	Outcr Conical
1	Inner Conical
7	
8	Sccondary Backing
9	Secondary Mirror
10	Primary Mirror
11	lintrance Prort
12	Image liane
13	Dumay

- lleprescoltative Cassegritin Struy Radtation Analysis

Following the calculation of all levels of scater for an offaxis source angle, the program call store informition for comparisoll with other source angles. An accumulated percent table can be stored for up to 10 source angles. This table includes the total energy reaching the image and the percent of energy coming from each of the whjects in the system mahing up that total. Thus, the user can see how the energy reaching the image changes with different off-axis source angles.
A figure of merit for the stray tadiation rejection performance of the system called point source transmittance (isi) con be defirted for cach offaxis point as either

> PST = Powerfunit area at entrince port perpendiculor it sobrce
or,

Trese PST's san lie stored for ench source amplo and plotied agalunt the off-anis angle nt the end of a cycte

c:ycles of moures allegen can also be wtached in a single jof execution. For example, one could rum 10 source angles on asyem with pio baffle vanes on the main the. alter the vane angles to dint, and have the program plot hoth suts of rosults together. Up to cight cyclen of source angles can he overplotied in one joh exccution. Parametric studics of the surfoce coalings as well as the effece of the HRDI: on a system's performance can be made with very little setple time.

Giarth Integration

With the gencrated PST data, the contribution from a broad sourco can be Inegrated by suldividing the nource and determining the off-axis angle for each section. Tlie PST curve can be interpolated and a resillting irradiance on the image calculated. Such a roursne, written by Gary llunt, Sperry Support Services, lluntsville, Alabama, has beon incorporated into apart. It is designed ti integrate the radintion from an carch-shified oliject for a set of earth limb angles designated in the inpue. The PST values are spline interpolated for the off-uxis subsections of the carth. The irradiance on the earth, abbedo, carth's radius, orhital alitude, and look angles to the hard earth are input variables. Output is the irradiance on the innge and the total power reaching the image as a function of a set of earth limb angles.

Comparison with Measured Data

The true value of an nnalysis program is measured by how aceurately it predicts the real result. apart predictions have heen compared to systens tested for their stray radiation rejection, and the results have usually lieen within a factor of two. The complex HOST sensor has been analyzed with APABT(4) and the results have civen us insigit juto how simple the scattering mechanisms can be, even in a complicated systen. Oic syspen, i $0.5 \cdot \mathrm{~m}$-diameter model of the Large Space Telescole (L.ST) has been designed, analyzed, fabicated, nad tested to help determino ApABT's worth. Before testing started, an analysis of the sys.em in tis ter:ing, chamber revealed that the testing chanber was going to have a major influence on the amount of power reaching the imge. As a result, the testing precedure had to be redesigned. The measured values have very good afrcement with the computer predictions. (f) The APART analysis was also helpful in directing the debuceing of the test procedures.

Conciusion

The Apant prograin has heen write to malyze the stray radiation in optical systems. It was designed to be seraightforward in structure with a versatile output and a simple nonredundant input. It fives the user an excellent insight into the seattering, mechanisms present within a system and also a ciear understanding of how to improve the system for better stray radiation performance. APART uses a minimum of computer core and central proce:sor time because it stores the resulte of calculations to eliminate unnecessary recalculatiul. Its ablifity to accurately predict the system performance as well as its ability to develop user insight have dispelled sone preconceived notions about scattering principles.

Reforences

1. Delamo, Fi., "First-Order Design and the y, \bar{y} Diagram," Appl. Opt., Vol. 2, No. 12, pp. 1251-1256. 196.3.
2. Shack, K. V., "Analytic system Design with a Pencil and Ruler--The Advantages of the y-y Diagram," Proc. Slill, Vol. 39, Aug. 1973, Apllicutione of Ccometrical Optics.
3. Ilarvey, J. l:., "I.ight-Scatioring Characteristics of Optical Survaces," Ph.D. Dissertation, University of Arizona, 1976.
4. A Study leading to Impovements in Radiation focusing and Control in Infrared Sensors, final report
 town, Miss., 02172.
5. Nunt, G. II, and Shelton, G. B., "Pexperimental Neasurement and Computer Analysis of Stray Radiation in a Telescope," in Proc. SPIL, Vol. 107, April 1977.

[^0]:

 - ero

