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Abstract. We introduce an innovation expansion method for estimation of factor
models for conditional variance (volatility) of a multivariate time series. We estimate
the factor loading space and the number of factors by a stepwise optimization
algorithm on expanding the “white noise space”. Simulation and a real data example
are given for illustration.
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1 Introduction

Factor modelling plays an important role in the analysis of high-dimensional
multivariate time series( see Sargent and Sims, 1977; Geweke, 1977) because
it is both flexible and parsimonious. Most of factor analysis in the literature
is for the mean and conditional mean of a multivariate time series and panel
data, see Pan and Yao (2008) and a series of papers of article by Forni, Hallin,
Lippi and Reichlin (2000,2004), and Hallin and Lǐska (2007).

For the conditional variance, which is so-called volatility, the multivariate
generalized autoregressive conditional heteroskedastic (GARCH) models are
commonly used, see Engle and Kroner (1995), Engle (2002), Engle & Shep-
pard (2001). But a multivariate GARCH model often has too many parame-
ters so that it is difficult to estimate the model, which is a high-dimensional
optimization problem. Factor models for volatility are useful tools to over-
come the overparametrisation problem, e.g. Factor-ARCH (Engle, Ng and
Rothschild 1990).

In this paper, we consider a frame work of factor analysis for the multi-
variate volatility, including factor ARCH as a special case. We introduce a
innovation expansion method for the estimation of the factor loading space
and the number of factors. Our method can change a high-dimensional op-
timization problem to a stepwise optimization algorithm by expanding the
“white noise space” (innovation space) one step each time.
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2 Models and methodology

Let {Yt} be a d×1 time series, and E(Yt|Ft−1) = 0, where Ft = σ(Yt, Yt−1, · · · ).
Assume that E(YtY

τ
t ) exists, and we use the notation Σy(t) = var(Yt|Ft−1).

Pan et al. (2009) consider a common factor model

Yt = AXt + εt, (1)

where Xt is a r×1 time series, r < d is unknown, A is a d×r unknown constant
matrix, {εt} is a sequence of i.i.d. innovations with mean 0 and covariance
matrix Σε, and εt is independent of Xt and Ft−1. This assumes that the
volatility dynamics of Y is determined effectively by a lower dimensional
volatility dynamics of Xt plus the static variation of εt, as

Σy(t) = AΣx(t)Aτ + Σε, (2)

where Σx(t) = var(Xt|Ft−1). The component variables of Xt are called the
factors. There is no loss of generality in assuming rk(A) = r and requiring
the column vectors of A = (a1, · · · , ar) to be orthonormal, i.e. AτA = Ir,
where Ir denotes the r × r identity matrix.

We are concerned with the estimation for the factor loading space M(A),
which is uniquely defined by the model, rather than the matrix A itself. This
is equivalent to the estimation for orthogonal complement M(B), where B
is a d× (d− r) matrix for which (A,B) forms a d× d orthogonal matrix, i.e.
BτA = 0 and BτB = Id−r. Now it follows from (1) that

BτYt = Bτεt. (3)

Hence BτYt are homoscedastic components since

E{BτYtY
τ
t B|Ft−1} = E{Bτεtε

τ
t B} = E{BτYtY

τ
t B} = Bτvar(Yt)B.

This implies that

BτE[{YtY
τ
t − var(Yt)}I(Yt−k ∈ C)]B = 0, (4)

for any t, k ≥ 1 and any measurable C ⊂ Rd.
For matrix H = (hij), let ||H|| = {tr(HτH)}1/2 denote its norm. Then

(4) implies that

k0∑

k=1

∑

C∈B
w(C)

∣∣∣∣
n∑

t=k0+1

E[Bτ{YtY
τ
t − var(Yt)}BI(Yt−k ∈ C)]

∣∣∣∣2 = 0 (5)

where k0 ≥ 1 is a prescribed integer, B is a finite or countable collection
of measurable sets, and the weight function w(·) ensures the sum on the
right-hand side finite. In fact we may assume that

∑
C∈B w(C) = 1. Even

without the stationarity on Yt, var(Yt) in (5) may be replaced by Σ̂y ≡
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(n − k0)−1
∑

k0<t≤n YtY
τ
t . This is due to the fact Bτvar(Yt)B = BτΣεB,

and

(n− k0)−1
n∑

t=k0+1

BτYtY
τ
t B = (n− k0)−1

n∑

t=k0+1

Bτεtε
τ
t B

a.s.→ BτΣεB,

see (3). Therefore Bτ Σ̂yB is a consistent estimator for Bτvar(Yt)B for all t.
Denote

Dk(C) = (n− k0)−1
n∑

t=k0+1

(YtY
τ
t − Σ̂y)I(Yt−k ∈ C).

Now (5) suggests to estimate B ≡ (b1, · · · , bd−r) by minimizing

Φn(B) =
k0∑

k=1

∑

C∈B
w(C)

∣∣∣∣BτDk(C)B
∣∣∣∣2 (6)

=
k0∑

k=1

∑

1≤i,j≤d−r

∑

C∈B
w(C)

{
bτ
i Dk(C)bj

}2

subject to the condition BτB = Id−r. This is a high-dimensional optimization
problem. Further it does not explicitly address the issue how to determine
the number of factors r. We present an algorithm which expands the inno-
vation space step by step and which also takes care of these two concerns.
Note for any bτA = 0, Zt ≡ bτYt(= bτεt) is a sequence of independent ran-
dom variables, and therefore, exhibits no conditional heterosedasticity. The
determination of the r is based on the likelihood ratio test for the null hypoth-
esis that the conditional variance of Zt given its lagged valued is a constant
against the alternative that it follows a GARCH(1,1) model with normal
innovations. See also Remark 1(vii) below.

Put

Ψ(b) =
k0∑

k=1

∑

C∈B
w(C)[bτDk(C)b]2,

Ψm(b) =
k0∑

k=1

{
2

m−1∑

i=1

∑

C∈B
w(C)[b̂τ

i Dk(C) b]2 +
∑

C∈B
w(C)[bτDk(C)b]2

}
.

An Innovation Expansion Algorithm for estimating B and r: let p be
an integer between 1 and k0 and α ∈ (0, 1) specify the level of significance
test.
Step 1. Compute b̂1 which minimises Ψ(b) subject to the constraint bτ b =

1. Let Zt = b̂τ
1Yt. Compute the 2log-likelihood ratio test statistic

T = (n−k0)
{
1+log

( 1
n− k0

n∑

t=k0+1

Z2
t

)}−min
n∑

t=k0+1

{Z2
t

σ2
t

+log(σ2
t )

}
,

(7)
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where σ2
t = α + βZ2

t−1 + γσ2
t−1, and the minimisation is taken

over α > 0, β, γ ≥ 0 and β + γ < 1. Terminate the algorithm
with r̂ = d and B̂ = 0 if T is greater than the top α-point of the
χ2

2-distribution. Otherwise proceed to Step 2.
Step 2. For m = 2, · · · , d, compute b̂m which minimizes Ψm(b) subject to

the constraint

bτ b = 1, bτ b̂i = 0 for i = 1, · · · ,m− 1. (8)

Terminate the algorithm with r̂ = d−m+1 and B̂ = (b̂1, · · · , b̂m−1)
if T , calculated as in (7) but with Zt = |b̂τ

mYt| now, is greater than
the top α-point of the χ2

2-distribution.
Step 3. In the event that Tp never exceeds the critical value for all 1 ≤

m ≤ d, let r = 0 and B̂ = Id.

Remark 1. (i) The algorithm grows the dimension of M(B) by 1 each time
until a newly selected direction b̂m being relevant to the volatility dynamics
of Yt. This effectively reduces the number of the factors in model (1) as much
as possible without losing significant information.

(ii) The minimization problem in Step 2 is a d-dimensional subject to
constraint (8). It has only (d − m + 1) free variables. In fact, the vector b
satisfying (8) is of the form

b = Amu, (9)

where u is any (d−m+1)×1 unit vector, Am is a d×(d−m+1) matrix with
the columns being the (d − m + 1) unit eigenvectors, corresponding to the
(d−m+1)-fold eigenvalue 1, of matrix Id−BmBτ

m, and Bm = (b̂1, · · · , b̂m−1).
Note that the other (m− 1) eigenvalues of Id −BmBτ

m are all 0.
(iii) We may let Â consist of the r̂ (orthogonal) unit eigenvectors, corre-

sponding to the common eigenvalue 1, of matrix Id−B̂B̂τ (i.e. Â = Ad−r̂+1).
Note that Âτ Â = Ir̂.

(iv) A general formal d × 1 unit vector is of the form bτ = (b1, · · · , bd),
where

b1 =
d−1∏

j=1

cos θj , bi = sin θi−1

d−1∏

j=i

cos θj (i = 2, · · · , d− 1), bd = sin θd−1,

where θ1, · · · , θd−1 are (d− 1) free parameters.
(v) We may choose B consisting of the balls centered at the origin in Rd.

Note that EYt−k = 0. When the underlying distribution of Yt−k is symmetric
and unimodal, such a B is the collection of the minimum volume sets of the
distribution of Yt−k, and this B determines the distribution of Yt−k (Polonik
1997). In numerical implementation we simply use w(C) = 1/K, where K is
the number the balls in B.

(vi) Under the additional condition that

cτA{E(XtX
τ
t |Ft−1)− E(XtX

τ
t )}Aτ c = 0 (10)
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if and only if Aτ c = 0, (4) is equivalent to

E{(bτ
i YtY

τ
t bi − 1)I(Yt−k ∈ C)} = 0, 1 ≤ i ≤ d− r, k ≥ 1 and C ∈ B.

See model (1). In this case, we may simply use Ψ(·) instead of Ψm(·) in Step
2 above. Note that for b satisfying constraint (8), (9) implies

Ψ(b) =
k0∑

k=1

∑

C∈B
w(C)

(
uτAτ

mDk(C)Amu
)2

. (11)

Condition (10) means that all the linear combinations of AXt are genuinely
(conditionally) heteroscadastic.

(vii) When the number of factors r is given, we may skip all the test
steps, and stop the algorithm after obtaining b̂1, · · · , b̂r from solving the r
optimization problems.

Remark 2. The estimation of A leads to a dynamic model for Σy(t) as
follow:

Σ̂y(t) = ÂΣ̂z(t)Âτ + ÂÂτ Σ̂yB̂B̂τ + B̂B̂τ Σ̂y,

where Σ̂y = n−1
∑

1≤t≤n YtY
τ
t , and Σ̂z(t) is obtained by fitting the data

{ÂτYt, 1 ≤ t ≤ n} with, for example, the dynamic correlation model of
Engle (2002).

3 Consistency of the estimator

For r < d, let H be the set consisting of all d× (d− r) matrices H satisfying
the condition HτH = Id−r. For H1,H2 ∈ H, define

D(H1,H2) = ||(Id −H1H
τ
1 )H2|| = {d− r − tr(H1H

τ
1 H2H

τ
2 )}1/2. (12)

Denote our estimator by B̂ = argminB∈HDΦn(B).

Theorem 1. Let C denote the class of closed convex sets in Rd. Un-
der some mild assumptions (see Pan et al. (2009)), if the collection B is a
countable subclass of C, then D(B̂, B0)

P→ 0.

4 Numerical properties

We always set k0 = 30, α = 5%, and the weight function C(·) ≡ 1. Let B
consist of all the balls centered at the origin.
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4.1 Simulated examples

Consider model (1) with r = 3 factors, and d×3 matrix A with (1, 0, 0), (0, 0.5, 0.866)
(0,−0.866, 0.5) as its first 3 rows, and (0, 0, 0) as all the other (d − 3) rows.
We consider 3 different settings for Xt = (Xt1, Xt2, Xt3)τ , namely, two sets
of GARCH(1,1) factors Xti = σtieti and σ2

ti = αi +βiX
2
t−1,i +γiσ

2
t−1,i, where

(αi, βi, γi), for i = 1, 2, 3, are

(1, 0.45, 0.45), (0.9, 0.425, 0.425), (1.1, 0.4, 0.4), (13)

or
(1, 0.1, 0.8), (0.9, 0.15, 0.7), (1.1, 0.2, 0.6), (14)

and one mixing setting with two ARCH(2) factors and one stochastic volatil-
ity factor:

Xt1 = σt1et1, σ2
t1 = 1 + 0.6X2

t−1,1 + 0.3X2
t−2,1, (15)

Xt2 = σt2et2, σ2
t2 = 0.9 + 0.5X2

t−1,2 + 0.35X2
t−2,2,

Xt3 = exp(ht/2)et3, ht = 0.22 + 0.7ht−1 + ut.

We let {εti}, {eti} and {ut} be sequences of independent N(0, 1) random
variables. Note that the (unconditional) variance of Xti, for each i, remains
unchanged under the above three different settings. We set the sample size
n = 300, 600 or 1000. For each setting we repeat simulation 500 times.

Table 1. Relative frequency estimates of r with d = 5 and normal innovations

r̂
Factors n 0 1 2 3 4 5

GARCH(1,1) with 300 .000 .046 .266 .666 .014 .008
coefficients (13) 600 .000 .002 .022 .926 .032 .018

1000 .000 .000 .000 .950 .004 .001

GARCH(1,1) with 300 .272 .236 .270 .200 .022 .004
coefficients (14) 600 .004 .118 .312 .500 .018 .012

1000 .006 .022 .174 .778 .014 .006

Mixture (15) 300 .002 .030 .166 .772 .026 .004
600 .000 .001 .022 .928 .034 .014
1000 .000 .000 .000 .942 .046 .012

We conducted the simulation with d = 5, 10, 20. To measure the difference
between M(A) and M(Â), we define

D(A, Â) = {|(Id −AAτ )Â|1 + |AAτ B̂|1}/d2, (16)

where |A|1 is the sum of the absolute values of all the elements in matrix A.
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0.0
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0.4

0.6
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n=300 n=600
factors (4.1)

n=1000 n=300 n=600
factors (4.2)

n=1000 n=300 n=600
factors (4.3)

n=1000

Errors of estimation for factor space

Fig. 1. Boxplots of D(A, Â) with two sets of GARCH(1,1) factors specified, re-
spectively, by (13) and (14), and mixing factors (15). Innovations are Gaussian and
d = 5.

0.2

0.4

0.6

0.8

n=300 n=600
d=10, factors (4.1)

n=1000 n=300 n=600
d=20, factors (4.1)

n=1000 n=300 n=600
d=10, factors (4.2)

n=1000 n=300 n=600
d=20, factors (4.2)

n=1000

Errors of estimation for factor space

Fig. 2. Boxplots of D(A, Â) with two sets of GARCH(1,1) factors specified in (13)
and (14), normal innovations and d = 10 or 20.

We report the results with d = 5 first. Table 1 lists for the relative fre-
quency estimates for r in the 500 replications. When sample size n increases,
the relative frequency for r̂ = 3 (i.e. the true value) also increases. Even for
n = 600, the estimation is already very accurate for GARCH(1,1) factors
(13) and mixing factors (14), less so for the persistent GARCH(1,1) factors
(14). For n = 300, the relative frequencies for r̂ = 2 were non-negligible,
indicating the tendency of underestimating of r, although this tendency dis-
appears when n increases to 600 or 1000. Figure 1 displays the boxplots of
D(A, Â). The estimation was pretty accurate with GARCH factors (13) and
mixing factors (15), especially with correctly estimated r. Note with n = 600
or 1000, those outliers (lying above the range connected by dashed lines)
typically correspond to the estimates r̂ 6= 3.

When d = 10 and 20, comparing with Table 1, the estimation of r is only
marginally worse than that with d = 5. Indeed the difference with d = 10 and
20 is not big either. Note the D-measures for different d are not comparable;
see (16). Nevertheless, Figure 2 shows that the estimation for A becomes more
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Table 2. Relative frequency estimates of r with GARCH(1,1) factors,
normal innovations and d=10 or 20

r̂
Coefficients d n 0 1 2 3 4 5 6 ≥ 7

(13) 10 300 .002 .048 .226 .674 .014 .001 .004 .022
10 600 .000 .000 .022 .876 .016 .012 .022 .052
10 1000 .000 .000 .004 .876 .024 .022 .022 .052
20 300 .000 .040 .196 .626 .012 .008 .010 .138
20 600 .000 .000 .012 .808 .012 .001 .018 .149
20 1000 .000 .000 .000 .776 .024 .012 .008 .180

(14) 10 300 .198 .212 .280 .248 .016 .008 .014 .015
10 600 .032 .110 .292 .464 .018 .026 .012 .046
10 1000 .006 .032 .128 .726 .032 .020 .016 .040
20 300 .166 .266 .222 .244 .012 .004 .001 .107
20 600 .022 .092 .220 .472 .001 .001 .012 .180
20 1000 .006 .016 .092 .666 .018 .016 .014 .172

Daily log returns of S&P 500 index

0 200 400 600

−
6

−
2

2
4

Daily log returns of Cisco System stock

0 200 400 600

−
15

−
5

0
5

10

Daily log returns of Intel Corporation stock

0 200 400 600

−
10

0
5

10

Fig. 3. Time plots of the daily log-returns of S&P 500 index, Cisco System and
Intel Coprporation stock prices.

accurate when n increases, and the estimation with the persistent factors (14)
is less accurate than that with (13).

4.2 A real data example

Figure 3 displays the daily log-returns of the S&P 500 index, the stock prices
of Cisco System and Intel Corporation in 2 January 1997 – 31 December
1999. For this data set, n = 758 and d = 3. The estimated number of factors
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Fig. 4. Time plots of the estimated factor and two homoscedastic compoments for
the S&P 500, Cisco and Intel data.
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Fig. 5. The correlograms of squared and absulote factor for the the S&P 500, Cisco
and Intel data

is r̂ = 1 with Âτ = (0.310, 0.687, 0.658). The time plots of the estimated
factor Zt ≡ ÂτYt and the two homoscedastic components B̂τYt are displayed
in Figure 4. The P -value of the Gaussian-GARCH(1,1) based likelihood ratio
test for the null hypothesis of the constant conditional variance for Zt is
0.000. The correlograms of the squared and the absolute factor are depicted
in Figure 5 which indicates the existence of heteroscedasticity in Zt. The
fitted GARCH(1,1) model for Zt is σ̂2

t = 2.5874 + 0.1416Z2
t−1 + 0.6509σ̂2

t−1.
In contrast, Figure 6 shows that there is little autocorrelation in squared or
absolute components of B̂τYt. The estimated constant covariance matrix is

Σ̂0 =




1.594
0.070 4.142
−1.008 −0.561 4.885


 .

The overall fitted conditional variance process is given with Σ̂z(t) = σ̂2
t .
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the the S&P 500, Cisco and Intel data
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