89 research outputs found

    Effects of dietary vegetable oil on atlantic salmon hepatocyte fatty acid desaturation and liver fatty acid compositions

    Get PDF
    Fatty acyl desaturase activities, involved in the conversion of the C18 EFA, 18:2n-6 and 18:3n-3, to the highly unsaturated fatty acids (HUFA) 20:4n-6, 20:5n-3 and 22:6n-3, are known to be under nutritional regulation. Specifically, the activity of the desaturation/elongation pathway is depressed when animals, including fish, are fed fish oils rich in n-3HUFA compared to animals fed vegetable oils rich in C18 EFA. The primary aims of the present study were a) to establish the relative importance of product inhibition (n-3HUFA) versus increased substrate concentration (C18 EFA) and, b) to determine whether 18:2n-6 and 18:3n-3 differ in their effects, on the hepatic fatty acyl desaturation/elongation pathway in Atlantic salmon (Salmo salar). Smolts were fed ten experimental diets containing blends of two vegetable oils, linseed (LO) and rapeseed oil (RO), and fish oil (FO) in a triangular mixture design for 50 weeks. Fish were sampled after 32 and 50 weeks, lipid and fatty acid composition of liver determined, fatty acyl desaturation/elongation activity estimated in hepatocytes using [1-14C]18:3n-3 as substrate, and the data subjected to regression analyses. Dietary 18:2n-6 was positively correlated, and n-3HUFA negatively correlated, with lipid content of liver. Dietary 20:5n-3 and 22:6n-3 were positively correlated with liver fatty acids with a slope greater than unity suggesting relative retention and deposition of these HUFA. In contrast, dietary 18:2n-6 and 18:3n-3 were positively correlated with liver fatty acids with a slope of less than unity suggesting metabolism via β-oxidation and/or desaturation/elongation. Consistent with this, fatty acyl desaturation/elongation in hepatocytes was significantly increased by feeding diets containing vegetable oils. Dietary 20:5n-3 and 22:6n-3 levels were negatively correlated with hepatocyte fatty acyl desaturation. At 32 weeks, 18:2n-6 but not 18:3n-3, was positively correlated with hepatocyte fatty acyl desaturation activity whereas the reverse was true at 50 weeks. The data indicate that both feedback inhibition through increased n-3HUFA and decreased C18 fatty acyl substrate concentration are probably important in determining hepatocyte fatty acyl desaturation activities, and that 18:2n-6 and 18:3n-3 may differ in their effects on this pathway

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely
    • …
    corecore