4,544 research outputs found

    The contribution of starbursts and normal galaxies to infrared luminosity functions at z < 2

    Get PDF
    We present a parameter-less approach to predict the shape of the infrared (IR) luminosity function (LF) at redshifts z < 2. It requires no tuning and relies on only three observables: (1) the redshift evolution of the stellar mass function for star-forming galaxies, (2) the evolution of the specific star formation rate (sSFR) of main-sequence galaxies, and (3) the double-Gaussian decomposition of the sSFR-distribution at fixed stellar mass into a contribution (assumed redshift- and mass-invariant) from main-sequence and starburst activity. This self-consistent and simple framework provides a powerful tool for predicting cosmological observables: observed IR LFs are successfully matched at all z < 2, suggesting a constant or only weakly redshift-dependent contribution (8-14%) of starbursts to the star formation rate density. We separate the contributions of main-sequence and starburst activity to the global IR LF at all redshifts. The luminosity threshold above which the starburst component dominates the IR LF rises from log(LIR/Lsun) = 11.4 to 12.8 over 0 < z < 2, reflecting our assumed (1+z)^2.8-evolution of sSFR in main-sequence galaxies.Comment: 7 pages, 4 figures & 1 table. Accepted for publication in ApJL. Minor typos corrected in v2 following receipt of proof

    The mechanism of double exponential growth in hyper-inflation

    Full text link
    Analyzing historical data of price indices we find an extraordinary growth phenomenon in several examples of hyper-inflation in which price changes are approximated nicely by double-exponential functions of time. In order to explain such behavior we introduce the general coarse-graining technique in physics, the Monte Carlo renormalization group method, to the price dynamics. Starting from a microscopic stochastic equation describing dealers' actions in open markets we obtain a macroscopic noiseless equation of price consistent with the observation. The effect of auto-catalytic shortening of characteristic time caused by mob psychology is shown to be responsible for the double-exponential behavior.Comment: 9 pages, 5 figures and 2 tables, submitted to Physica

    Ultraslow light in inhomogeneously broadened media

    Get PDF
    We calculate the characteristics of ultraslow light in an inhomogeneously broadened medium. We present analytical and numerical results for the group delay as a function of power of the propagating pulse. We apply these results to explain the recently reported saturation behavior [Baldit {\it et al.}, \prl {\bf 95}, 143601 (2005)] of ultraslow light in rare earth ion doped crystal.Comment: 4 pages, 5 figure

    Constraining reionization using the thermal history of the baryons

    Get PDF
    The thermal evolution of the intergalactic medium (IGM) depends on the reionization history of the universe. Numerical simulations indicate that the low density IGM, which is responsible for the low column density Ly-alpha forest, follows a well defined temperature-density relation. This results in a cut-off in the distribution of line widths as a function of column density. We use hydrodynamic simulations to calibrate the relation between the cut-off and the temperature-density relation and apply this relation to Keck spectra spanning a redshift range z=2-4.5. We find that the temperature peaks at z~3 and interpret this as evidence for reheating due to the reionization of helium.Comment: 4 pages, 2 figures, to appear in "Cosmic evolution and galaxy formation: Structure, interactions, and feedback", eds. J. Franco et a

    The contribution of starbursts and normal galaxies to IR luminosity functions and the molecular gas content of the Universe at z<2

    Get PDF
    We present a parameter-less approach capable of predicting the shape of the infrared luminosity function at redshifts z ≤2. It relies on three observables: (1) the redshift evolution of the stellar mass function for star-forming galaxies, (2) the evolution of the specific star formation rate of main-sequence galaxies, and (3) the double-Gaussian decomposition of the specific star formation rate distribution at fixed stellar mass into the contributions (assumed to be redshift- and mass-invariant) from main-sequence and starburst activity. Using this self-consistent and simple framework, we identify the contributions of main-sequence and starburst activity to the global infrared luminosity function and find a constant or only weakly redshift-dependent contribution (8–14%) of starbursts to the star formation rate density at z ≤2. Over the same redshift range, we also infer the evolution of the cosmic abundance of molecular gas in star-forming galaxies, based on the relations between star formation rate and molecular gas mass followed by normal and starburst galaxies

    The quantum-classical crossover of a field mode

    Get PDF
    We explore the quantum-classical crossover in the behaviour of a quantum field mode. The quantum behaviour of a two-state system - a qubit - coupled to the field is used as a probe. Collapse and revival of the qubit inversion form the signature for quantum behaviour of the field and continuous Rabi oscillations form the signature for classical behaviour of the field. We demonstrate both limits in a single model for the full coupled system, for states with the same average field strength, and so for qubits with the same Rabi frequency.Comment: 6 pages, 3 figures (in this version the figures, text and references have all been expanded

    One dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibre

    Full text link
    A quantum chain model of many molecule motors is proposed as a mathematical physics theory on the microscopic modeling of classical force-velocity relation and tension transients of muscle fibre. We proposed quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibre which has no empirical relation yet, it is much more complicate than hyperbolic relation. Using the same Hamiltonian, we predicted the mathematical force-velocity relation when the muscle is stimulated by alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency has a physical understanding by Doppler effect in this quantum chain model. Further more, we apply quantum physics phenomena to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transients curves found their correspondence in the theoretical output of quantum two-level and three-level model. Mathematically modeling electric stimulus as photons exciting a quantum three-level particle reproduced most tension transient curves of water bug Lethocerus Maximus.Comment: 16 pages, 12 figures, Arguments are adde

    Entanglement generation in persistent current qubits

    Full text link
    In this paper we investigate the generation of entanglement between two persistent current qubits. The qubits are coupled inductively to each other and to a common bias field, which is used to control the qubit behaviour and is represented schematically by a linear oscillator mode. We consider the use of classical and quantum representations for the qubit control fields and how fluctuations in the control fields tend to suppress entanglement. In particular, we demonstrate how fluctuations in the bias fields affect the entanglement generated between persistent current qubits and may limit the ability to design practical systems.Comment: 7 pages, 4 figures, minor changes in reply to referees comment

    Estimating factor models for multivariate volatilities : an innovation expansion method

    Get PDF
    We introduce an innovation expansion method for estimation of factor models for conditional variance (volatility) of a multivariate time series. We estimate the factor loading space and the number of factors by a stepwise optimization algorithm on expanding the "white noise space". Simulation and a real data example are given for illustration
    • …
    corecore