195 research outputs found

    Moderation of the Association between Media Exposure and Youth Smoking Onset: Race/Ethnicity, and Parent Smoking

    Get PDF
    This study of youth smoking onset aims to replicate previously published media moderation effects for race/ethnicity in a national longitudinal multiethnic sample of U.S. adolescents. Previous research has demonstrated that associations between media and smoking during adolescence are greater for Whites than Hispanics or Blacks, and for youth living in non-smoking families. In this study, changes in smoking status over 24 months were assessed among 4,511 baseline never-smokers. The incidence of smoking onset was 14.3% by 24 months with no differences by race/ethnicity. Blacks had higher exposure to movie smoking and overall television viewing compared with Whites and Hispanics. Whites responded to movie smoking regardless of parent smoking but more strongly if their parents were non-smokers. In contrast, Black adolescents showed little behavioral response to any media, regardless of parent smoking. Hispanic adolescents responded only to TV viewing and only when their parents did not smoke. In an analysis assessing the influence of the race of smoking characters on smoking behavior of White and Black adolescents, Whites responded to both White and Black movie character smoking, whereas Blacks responded only to smoking by Black movie characters. Taken as a whole, the findings replicate and extend previous findings, suggesting media factors are more influential among adolescents at low to moderate overall risk for smoking. We draw analogies between these low-moderate risk adolescents and “swing voters” in national elections, suggesting that media effects are more apt to influence an adolescent in the middle of the risk spectrum, compared with his peers at either end of it

    Submillimetre compactness as a critical dimension to understand the main sequence of star-forming galaxies

    Get PDF
    We study the interstellar medium (ISM) properties as a function of the molecular gas size for 77 infrared-selected galaxies at z ∼ 1.3, having stellar masses 109.4 ≲ M⋆ ≲ 1012.0 M⊙ and star formation rates 12 ≲ SFRFIR ≲ 1000 M⊙ yr−1. Molecular gas sizes are measured on ALMA images that combine CO(2-1), CO(5-4), and underlying continuum observations, and include CO(4-3), CO(7-6) + [CI](3P2 − 3P1), [CI](3P1 − 3P0) observations for a subset of the sample. The ≳46 per cent of our galaxies have a compact molecular gas reservoir, and lie below the optical discs mass–size relation. Compact galaxies on and above the main sequence have higher CO excitation and star formation efficiency than galaxies with extended molecular gas reservoirs, as traced by CO(5-4)/CO(2-1) and CO(2-1)/LIR, SF ratios. Average CO + [CI] spectral line energy distributions indicate higher excitation in compacts relative to extended sources. Using CO(2-1) and dust masses as molecular gas mass tracers, and conversion factors tailored to their ISM conditions, we measure lower gas fractions in compact main-sequence galaxies compared to extended sources. We suggest that the submillimetre compactness, defined as the ratio between the molecular gas and the stellar size, is an unavoidable information to be used with the main sequence offset to describe the ISM properties of galaxies, at least above M⋆ ≥ 1010.6 M⊙, where our observations fully probe the main sequence scatter. Our results are consistent with mergers driving the gas in the nuclear regions, enhancing the CO excitation and star formation efficiency. Compact main-sequence galaxies are consistent with being an early post-starburst population following a merger-driven starburst episode, stressing the important role of mergers in the evolution of massive galaxies

    HELP: Star formation as a function of galaxy environment with Herschel

    Get PDF
    The Herschel Extragalactic Legacy Project (HELP) brings together a vast range of data frommany astronomical observatories. Its main focus is on the Herschel data, which maps dustobscured star formation over 1300 deg2. With this unprecedented combination of data sets, it is possible to investigate how the star formation versus stellar mass relation (main sequence)of star-forming galaxies depends on environment. In this pilot study, we explore this question within 0.1 2. We also estimate the evolution of the star formation rate density in the COSMOS field, and our results are consistent with previous measurements at z 2 but we find a 1.4+0.3-0.2 times higher peak value of the star formation rate density at z ~ 1.9

    A ‘modified de Gramont’ regimen of fluorouracil, alone and with oxaliplatin, for advanced colorectal cancer

    Get PDF
    The standard de Gramont (dG) regimen of fortnightly leucovorin, bolus fluorouracil and 22-h infusion of fluorouracil, d1+2, and the same regimen plus oxaliplatin, are effective but also cumbersome. We therefore present simplified ‘Modified de Gramont’ (MdG) regimens. Forty-six advanced gastrointestinal cancer patients entered a dose-exploring study of MdG, including an expanded cohort of colorectal cancer patients at optimum dose. Treatment (fortnightly) comprised: 2-h i.v.i. leucovorin (350 mg d,l-LV or 175 mg l-LV, not adjusted for patient surface area); bolus fluorouracil (400 mg m−2), then ambulatory 46-h fluorouracil infusion (2000–3600 mg m−2, cohort escalation). Subsequently, 62 colorectal patients (25 unpretreated; 37 fluorouracil-resistant) received MdG plus oxaliplatin (OxMdG) 85 mg m−2. Fluorouracil pharmacokinetics during MdG were compared with dG. The optimum fluorouracil doses for MdG alone were determined as 400 mg m−2 bolus + 2800 mg m−2 46-h infusion. A lower dose of 400 mg m−2 bolus + 2400 mg m−2 infusion which, like dG produces minimal toxicity, was chosen for the OxMdG combination. Fluorouracil exposure (AUC0–48 h) at this lower dose is equivalent to dG. With OxMdG, grade 3–4 toxicity was rare (neutropenia 2.8% cycles; vomiting or diarrhoea <1% cycles), but despite this there were two infection-associated deaths. Oxaliplatin was omitted for cumulative neurotoxicity in 17 out of 62 patients. Objective responses in colorectal cancer patients were: 1st-line MdG (22 assessable): PR=36%, NC=32%, PD=32%. 1st-line OxMdG (24 assessable): CR/PR=72%; NC=20%; PD=8%; 2nd line OxMdG (34 assessable): PR=12%; NC=38%; PD=50%. MdG and OxMdG are convenient and well-tolerated. OxMdG was particularly active as 1st-line treatment of advanced colorectal cancer. Both regimens are being further evaluated in the current UK MRC phase III trial

    Nutritional and environmental regulation of the synthesis of highly unsaturated fatty acids and of fatty-acid oxidation in Atlantic salmon (Salmo salar L.) enterocytes and hepatocytes

    Get PDF
    The aim was to determine if highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO), or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm and linseed oils. At key points in the life cycle, fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activities were determined in enterocytes and hepatocytes using [1-14C]18:3n-3 as substrate. As observed previously, HUFA synthesis in hepatocytes showed peak activity at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a similar level to that in hepatocytes. However, HUFA synthesis in enterocytes increased rapidly after seawater transfer and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Generally, enterocyte HUFA synthesis was higher in fish fed the VO diet compared to the FO diet. Oxidation of [1-14C]18:3n-3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO compared to fish fed FO. In enterocytes, oxidation of [1-14C]18:3 in fish fed FO showed a peak in activity just prior to seawater transfer. In fish fed VO, other than high activity at 9 months, the pattern was similar to that obtained in enterocytes from fish fed FO with a high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells appeared to be under dual nutritional and environmental or seasonal regulation. The temporal patterns for fatty acid oxidation were generally similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting possibly different regulatory cues

    Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5 : probing the roles of system-specific accessory proteins

    Get PDF
    A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems

    Highly Unsaturated Fatty Acid Synthesis in Atlantic Salmon: Characterization of ELOVL5- and ELOVL2-like Elongases

    Get PDF
    Fish species vary in their capacity to biosynthesize the n-3 long-chain polyunsaturated fatty acids (LC-PUFA) eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids that are crucial to the health of higher vertebrates. The synthesis of LC-PUFA involves enzyme-mediated fatty acyl desaturation and elongation. Previously, a cDNA for an elongase, now termed elovl5a, had been cloned from Atlantic salmon. Here we report on the cloning of two new elongase cDNAs: a second elovl5b elongase, corresponding to a 294 aa protein, and an elovl2-like elongase, coding for a 287 aa protein, characterized for the first time in a non-mammalian vertebrate. Heterologous expression in yeast showed that the salmon Elovl5b elongated C18 and C20 PUFA, with low activity towards C22, while Elovl2 elongated C20 and C22 PUFA with lower activity towards C18 PUFA. All three transcripts showed predominant expression in the intestine and liver, followed by the brain. Elongase expression showed differential nutritional regulation. Levels of elovl5b and particularly of elovl2, but not of elovl5a, transcripts were significantly increased in liver of salmon fed vegetable oils (VO) compared to fish fed fish oil (FO). Intestinal expression showed a similar pattern. Phylogenetic comparisons indicate that, in contrast to salmon and zebrafish, Acanthopterygian fish species lack elovl2 which is consistent with their neglible ability to biosynthesise LC-PUFA and to adapt to VO dietary inclusion, compared to predominantly freshwater salmonids. Thus the presence of elovl2 in salmon explains the ability of this species to biosynthesise LC-HUFA and may provide a biotechnological tool to produce enhanced levels of LC-PUFA, particularly DHA, in transgenic organisms
    corecore