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Abstract Fish species vary in their capacity to biosynthesize the n-3 long-chain 

polyunsaturated fatty acids (LC-PUFA) eicosapentaenoic (EPA) and docosahexaenoic (DHA) 

acids that are crucial to the health of higher vertebrates. The synthesis of LC-PUFA involves 

enzyme-mediated fatty acyl desaturation and elongation. Previously, a cDNA for an elongase, 

now termed elovl5a, had been cloned from Atlantic salmon. Here we report on the cloning of 

two new elongase cDNAs: a second elovl5b elongase, corresponding to a 294 aa protein, and 

an elovl2-like elongase, coding for a 287 aa protein, characterized for the first time in a non-

mammalian vertebrate. Heterologous expression in yeast showed that the salmon Elovl5b 

elongated C18 and C20 PUFA, with low activity towards C22, while Elovl2 elongated C20 

and C22 PUFA with lower activity towards C18 PUFA. All three transcripts showed 

predominant expression in the intestine and liver, followed by the brain. Elongase expression 

showed differential nutritional regulation. Levels of elovl5b and particularly of elovl2, but not 

of elovl5a, transcripts were significantly increased in liver of salmon fed vegetable oils (VO) 

compared to fish fed fish oil (FO). Intestinal expression showed a similar pattern. 

Phylogenetic comparisons indicate that, in contrast to salmon and zebrafish, 

Acanthopterygian fish species lack elovl2 which is consistent with their neglible ability to 

biosynthesise LC-PUFA and to adapt to VO dietary inclusion, compared to predominantly 

freshwater salmonids. Thus the presence of elovl2 in salmon explains the ability of this 

species to biosynthesise LC-HUFA and may provide a biotechnological tool to produce 

enhanced levels of LC-PUFA, particularly DHA, in transgenic organisms.  
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Introduction 

In vertebrates, biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) involves 

sequential desaturation and elongation of precursor essential PUFA, 18:2n-6 and 18:3n-3.  

Synthesis of arachidonic acid (ARA; 20:4n-6) is achieved by Δ6 desaturation of 18:2n-6 to 

produce 18:3n-6 that is elongated to 20:3n-6 followed by Δ5 desaturation (Cook, 1996). 

Synthesis of eicosapentaenoic acid (EPA; 20:5n-3) from 18:3n-3 uses the same enzymes and 

pathway as for ARA, but docosahexaenoic acid (DHA; 22:6n-3) synthesis requires two 

further elongation steps, a second Δ6 desaturation and a chain shortening step (Sprecher, 

2000). The extent to which any species can produce LC-PUFA varies and is dependent on 

their complement of fatty acyl desaturase and elongase enzymes. Freshwater fish and 

salmonids, including Atlantic salmon (Salmo salar), are capable of producing DHA from 

18:3n-3 and so must express all the enzyme activities necessary for this biosynthetic pathway 

(Tocher, 2003).  

      Interest in LC-PUFA synthesis in fish results from the fact that they are the primary 

source in the human food basket of the omega-3 or n-3 LC-PUFA, that are crucial to the 

health of higher vertebrates. Aquaculture now supplies an increasing proportion of the fish for 

human consumption (Tidwell and Allan, 2002; FAO, 2006) and, until now, formulation of 

diets with fish oil (FO) has ensured that farmed fish are rich in n-3 LC-PUFA (Bell and 

Waagbø, 2008). As global FO supplies are at their sustainable limit, further expansion of 

aquaculture requires suitable alternatives, with vegetable oils (VO) being prime candidates. 

However, VOs are generally rich in C18 PUFA but lack the n-3 LC-PUFA abundant in FO 

(Sargent et al., 2002) and thus flesh of fish fed VO is characterised by increased levels of 

18:2n-6 and 18:3n-3, and decreased levels of EPA and DHA, compromising their nutritional 

value to the human consumer (Izquierdo et al., 2003; Regost et al., 2003). Our hypothesis is 

that understanding the molecular basis of LC-PUFA biosynthesis and regulation in salmon 
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will allow us to optimise the activity of the pathway to enable efficient and effective use of 

dietary VOs while maintaining the nutritional quality of the fish. Alimuddin et al. (2008) take 

this further by suggesting genetic engineering as a strategy to create fish capable of being 

reared on VO diets while still maintaining their health-promoting composition and, to 

demonstrate this, were able to increase EPA and DHA contents in transgenic zebrafish by 

over-expressing a masu salmon elovl5-like gene. 

     In mammals, several fatty acyl elongase genes termed ELOVL1 to ELOVL7, with differing 

fatty acid (FA) substrate specificities, have been described with ELOVL2 and ELOVL5 shown 

to participate in LC-PUFA biosynthesis (Leonard et al., 2000, 2002, 2004; Jakobsson et al., 

2006). Mammalian ELOVL5 is predominantly involved in the elongation of C18 and C20 

PUFA, whereas ELOVL2 has greatest activity in the elongation of C20 and C22 (Leonard et 

al., 2000, 2002, 2004). Previously, we cloned and characterised a cDNA for a fatty acyl 

elongase gene from Atlantic salmon (Hastings et al., 2005). Phylogenetic analysis grouped the 

salmon elongase cDNA into a cluster with greatest similarity to mammalian ELOVL5 (Leaver 

et al., 2008a). Heterologous expression in yeast showed that the product of the salmon 

elongase cDNA had the ability to lengthen C18 and C20 PUFA with only low activity 

towards C22 (Hastings et al., 2005). Therefore, the salmon elongase appeared to have a 

similar substrate specificity to mammalian ELOVL5. More recently, a search of the Atlantic 

salmon EST database (www.tigr.org) showed it contained a second fatty acyl elongase 

transcript that appeared related to mammalian ELOVL2 (Leaver et al., 2008a).  

      The aim of the present study was to isolate and characterise cDNAs for other fatty acyl 

elongases of Atlantic salmon, particularly for elovl2, which has not been previously reported 

in a non-mammalian vertebrate. Two new cDNAs identified as an elovl2-like elongase and a 

second elovl5-like fatty acyl elongase were cloned. Functional characterisation of their 

encoded polypeptides in yeast, Saccharomyces cerevisiae, showed that the salmon Elovl2-like 
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protein elongated C20 and C22 PUFA with only low activity towards C18 PUFA. The second 

elongase, named elovl5b, elongated C18 and C20 PUFA, with residual activity towards C22. 

The tissue distribution of the three elongase transcripts was determined, and their nutritional 

regulation in response to changes in the FA composition of the diet was analysed in liver and 

intestine.  

 

Materials and methods 

cDNA cloning 

 

The sequence of the previously cloned and characterised elovl5a cDNA (gb|AY170327|; 

Hastings et al., 2005) was used to query the GenBank dbEST (www.ncbi.nlm.nih.gov) and 

Atlantic salmon Gene Index (http://compbio.dfci.harvard.edu/tgi/) databases. This led to the 

identification of salmon EST sequences (gb|DW546112| and ti|TC91192|) showing similarity 

to the elovl5a cDNA. Primers specific to these sequences were designed and the fragments 

obtained by polymerase chain reaction (PCR) using GoTaq
®
 Colorless Master Mix (Promega, 

Southampton, U.K.), following manufacturer’s instructions, were sequenced (CEQ-8800 

Beckman Coulter Inc., Fullerton, U.S.A.) and further extended by 5’ and 3’ rapid 

amplification of cDNA ends (RACE) PCR (FirstChoice  RLM-RACE kit, Ambion, Applied 

Biosystems, Warrington, U.K.) to produce full-length cDNAs. These were deposited in the 

GenBank database under accession numbers gb|FJ237531| and gb|FJ237532| for the cDNAs 

produces from the gb|DW546112| and ti|TC91192| ESTs, respectively. 

 

Sequence and phylogenetic analysis 
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The deduced amino acid (aa) sequences of the two newly cloned elongase cDNAs were 

aligned with those of salmon (Ss) Elovl5a (NP_001117039) and of human (Hs) ELOVL5 

(NP_068586) and ELOVL2 (NP_060240) using ClustalW2 or, to compare sequences two by 

two, the EMBOSS Pairwise Alignment Algorithms tool 

(http://www.ebi.ac.uk/Tools/emboss/align/ ) was used. The aa sequences of elovl genes from 

other fish species were derived by searching the ENSEMBL genome database using BLASTX 

and the protein sequences of human and salmon elovl5 and elovl2 as keys. Genomic 

sequences with similarity were extracted and compared with the protein sequence of salmon 

elovl2 and elovl5 using Wise2 (http://www.ebi.ac.uk/Tools/Wise2/index.html) to generate 

deduced Elovl polypeptides from Tetraodon nigroviridis, Takifugu rubripes, Danio rerio, 

Gasterosteus aculeatus and Oryzias latipes. Deduced aa sequences of elongases from various 

species were aligned using ClustalX and sequence phylogenies were reconstructed using the 

Neighbour Joining method (Saitou and Nei, 1987). GenBank accession numbers for these 

sequences are: NP_956747 and NP_001035452 for Danio rerio (Dr), AAV67803 for 

Oncorhynchus mykiss (Om), AAL69984 for Scophthalmus maximus (Sm), AAT81404 for 

Sparus aurata (Sa), AAO13174 for Oreochromis niloticus (On), AAT81406 for Gadus 

morhua (Gm) and AAT81405 for Clarias gariepinus (Cg). Human and Atlantic salmon 

sequences were the same used in the aa alignment. Confidence in the resulting phylogenetic 

tree branch topology was measured by bootstrapping through 1000 iterations. 

 

Functional characterisation 

 

PCR fragments corresponding to the open reading frames (ORFs) of the putative elongases 

were amplified from salmon intestine cDNA using sense and antisense primers containing a 

digestion site (underlined) - Elo1BVF1 

http://www.ebi.ac.uk/Tools
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(CCCAAGCTTGAAATGGAGGCTTTTAATCATAAAC; HindIII) and Elo1BVR1 

(CCGCTCGAGTCAGTCCACCCGCACTTT; XhoI), for gb|FJ237531|, and primers 

Elovl2VF2 (CCCGAGCTCAAGATGAACCATTTACAAAGTTTGG; SacI) and Elovl2VR1 

(CCGCTCGAGCTACTTTCTCTTCTTGAAGCTG; XhoI) for gb|FJ237532|. PCR was 

performed using the high fidelity PfuTurbo  DNA Polymerase (Stratagene, Agilent 

Technologies, Cheshire, U.K.), with an initial denaturing step at 95ºC for 2 min, followed by 

32 cycles of denaturation at 95ºC for 30 s, annealing at 60ºC (for primers Elo1BVF1/ 

Elo1BVR1) or 62ºC (for primers Elovl2VF2/ Elovl2VR1) for 30 s, and extension at 72ºC for 

1 min, followed by a final extension at 72ºC for 5 min. The ORF of the salmon elovl5a cDNA 

was amplified using the primers described in Hastings et al. (2005). The DNA fragments were 

then digested with the corresponding restriction endonucleases (New England BioLabs, Herts, 

U.K.) and ligated into a similarly restricted pYES2 yeast expression vector (Invitrogen, 

Paisley, U.K.). Ligation products were used to transform Top10F’ Escherichia coli competent 

cells (Invitrogen) which were screened for the presence of recombinants. The purified 

plasmids (illustraTM GFX™ Micro Plasmid Prep Kit, GE Healthcare Life Sciences, 

Buckinghamshire, U.K.) containing the three elongase ORFs or the pYES vector alone were 

then used to transform Saccharomyces cerevisiae competent cells (S.c. EasyComp 

Transformation Kit, Invitrogen). Transformation and selection of yeast with recombinant 

elongase-pYES2 plasmids, yeast culture and FA analysis was performed as described in detail 

previously (Hastings et al., 2001, 2005; Agaba et al., 2004; Zheng et al., 2005). Briefly, 

cultures of recombinant yeast were grown in S. cerevisiae minimal medium
-uracil

 

supplemented with one of the following FA substrates: stearidonic acid (18:4n-3), -linolenic 

acid (18:3n-6), EPA (20:5n-3), ARA (20:4n-6), docosapentaenoic acid (22:5n-3) or 

docosatetraenoic acid (22:4n-6).  Docosapentaenoic and docosatetraenoic acids (>98-99% 

pure) were purchased from Cayman Chemical Co. (Ann Arbor, U.S.A.) and the remaining FA 
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substrates (>99% pure) and chemicals used to prepare the S. cerevisiae minimal medium
-uracil

 

were from Sigma Chemical Co. Ltd. (Dorset, U.K.). FA were added to the yeast cultures at 

final concentrations of 2.5 (C18), 5.0 (C20) and 10.0 (C22) M. After 2-days, yeast were 

harvested and washed, and lipid extracted by homogenization in chloroform/methanol (2:1, 

v/v) containing 0.01% BHT as antioxidant. FA methyl esters were prepared, extracted, 

purified, and analyzed by GC in order to calculate the proportion of substrate FA converted to 

elongated FA product from as [product area/(product area +substrate area)] x 100. The 

identity of the FA peaks was based on GC retention time and confirmed by GC-MS as 

described previously (Hastings et al., 2001; Agaba et al., 2004). 

 

Tissue distribution and nutritional regulation 

 

For the tissue expression profile, tissues (intestine, liver, white muscle, red muscle, kidney, 

spleen, heart, brain, gill and adipose tissue) were dissected from three salmon, immediately 

frozen in liquid nitrogen and stored at –70 ºC pending RNA extraction. The fish were ~ 150 g 

post-smolts held in 7 m
3
 seawater tanks at ambient temperature, salinity and photoperiod in 

the Marine Environment Research Laboratory, Machrihanish, Scotland, U.K., and fed a 

commercial salmon feed based on fish meal and fish oil. The effects of diet on elongase 

expression were investigated in samples from salmon post-smolts fed four diets with the same 

basal composition but formulated with different oils, FO, rapeseed oil (RO), linseed oil (LO) 

or soybean oil (SO). Full descriptions of the diets and the trial have been reported previously 

(Leaver et al. 2008b). At the end of the trial, 0.5 g of liver and small intestine of 5 fish per 

dietary treatment were dissected and rapidly disrupted in 5ml of TRI Reagent (Ambion, 

Applied Biosystems) using an Ultra-Turrax homogeniser (Fisher Scientific, Loughborough, 
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U.K.), and immediately frozen in liquid nitrogen and stored at –70 ºC prior to RNA 

extraction. 

 

Tissue RNA extraction and quantitative real time PCR (qPCR)  

 

Total RNA was extracted by organic solvent, according to manufacturer’s instructions 

(Ambion, Applied Biosystems), and RNA quality and quantity assessed by electrophoresis 

(Bioanalyser 2100, Agilent Technologies, Santa Clara, U.S.A.) and spectrophotometry 

(NanoDrop ND-1000, Thermo Scientific, Wilmington, U.S.A.), respectively. One µg of total 

RNA per sample was reverse transcribed into cDNA using a Verso
TM

 cDNA kit (ABgene, 

Surrey, U.K.), following manufacturer’s instructions. Briefly, each 20 µl reaction contained 1 

µg of total RNA, 300 ng of random hexamers and 125 ng of anchored oligo-dT, dNTP mix 

(500 µM each), 1X cDNA synthesis buffer, RT enhancer and Verso enzyme mix. Following 

cDNA synthesis at 42 ºC for 1 h, reactions were stopped by heating at 95 ºC for 2 min and 

cDNA diluted 10-fold with water.  

Expression of the three elongase transcripts was studied by quantitative real time PCR 

(qPCR). The qPCR primers were designed in regions corresponding to the 3’UTR region of 

elovl5a and of the two new elongase cDNAs. In addition, amplification of four reference 

genes (elongation factor-1  (elf-1 ), -actin, an EST previously shown to be unresponsive to 

VO dietary manipulation, and 18S rRNA) was also performed, for normalization of the results. 

The unresponsive EST is an anonymous cDNA feature selected from a salmon cDNA 

microarray study and identified as a suitable reference gene on the basis of constant 

expression between different VO diets and time points (Taggart et al., 2008). Table 1 shows 

the sequence of the primers used, their specific annealing temperatures, the size of fragments 

produced and the reference sequences used for primer design, using the Primer3 software 
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(http://biotools.umassmed.edu/bioapps/primer3_www.cgi). For tissue distribution, qPCR 

amplicons corresponding to the three putative elongases were cloned into the pBluescript  II 

KS phagemid vector (Stratagene), while that of 18S rRNA was cloned into the pCR2.1-TOPO 

vector (TOPO TA cloning kit, Invitrogen). These recombinant vectors were then restricted 

with SacI or XhoI and the linearized plasmid DNA containing the target sequence for each 

gene quantified spectrophotometrically and serial-diluted to generate a standard curve of 

known copy numbers. For effects of diet, qPCR analysis used relative quantification with elf-

1 , -actin and the unresponsive EST as reference genes, and amplification efficiency of the 

primer pairs assessed by serial dilutions of cDNA pooled from the samples being quantified. 

QPCR amplifications were carried out in duplicate using a Quantica machine (Techne, 

Cambridge, U.K.) in a final volume of 20 µl containing 2 µl (for the nutritional regulation 

trial and 18S rRNA) or 5 µl (for tissue distribution) diluted (1/10) cDNA, 0.5 µM of each 

primer and 10 µl AbsoluteTM QPCR SYBR
®
 Green mix (ABgene). Amplifications were 

carried out with a systematic negative control (NTC-non template control, containing no 

cDNA). The qPCR profiles contained an initial activation step at 95 °C for 15 min, followed 

by 30 to 40 cycles: 15 s at 95 °C, 15 s at the specific primer pair annealing Tm (Table I) and 

30 s at 72 °C. After the amplification phase, a melt curve of 0.5 ºC increments from 75 ºC to 

90 °C was performed, enabling confirmation of the amplification of a single product in each 

reaction. The qPCR product sizes were checked by agarose gel electrophoresis and their 

identity confirmed by sequencing. No primer-dimer formation occurred in the NTC.  

   

Statistical analysis 

 

For tissue expression profiles, results were expressed as mean normalized values (  SD) 

corresponding to the ratio between the copy numbers of the putative elongase transcripts and 
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the copy numbers of the reference gene, 18S rRNA. For the tissues with highest expression 

level, intestine and liver, a one-way analysis of variance (ANOVA) followed by a Tukey HSD 

test, at a significance level of P<0.05, was performed to compare the expression level of the 

three transcripts in both tissue samples, using Statistica 6 (StatSoft, Tulsa, U.S.A.). The 

effects of diet on elongase expression, expressed as the relative expression ratio of each gene 

in fish fed one of the VOs in relation to those fed FO (control) and normalized by three 

reference genes (elf-1 , -actin and the unresponsive EST), were analysed for statistical 

significance using the relative expression software tool (REST-MCS
©

, version 2, 

http://www.gene-quantification.info/), which employs a pair wise fixed reallocation 

randomisation test (10,000 randomisations) with efficiency correction (Pfaffl et al., 2002). 

 

 

Results 

 

Salmon fatty acyl elongase cDNAs sequences and phylogenetics   

 

A 1650 bp full-length cDNA sequence was obtained by 5’ and 3’ RACE PCR from 

gb|DW546112| and was deposited in the GenBank database under the accession number 

gb|FJ237531|. It contains an ORF of 885 bp encoding a putative protein of 294 aa, sharing 

91% aa sequence identity with the previously described Elovl5-like salmon elongase 

(Elovl5a) and 93% identity in nucleotide sequence, in the ORF, to elovl5a (gb|AY170327|). 

This protein is 70% identical to several mammalian ELOVL5-like proteins (Rattus 

norvegicus, Mus musculus and Homo sapiens) and 74-81% identical to other fish Elovl5-like 

proteins (Danio rerio, Gadus morhua, Oreochromis niloticus, Clarias gariepinus, 

Scophthalmus maximus and Sparus aurata). This new transcript was thus named elovl5b.  

http://www.gene-quantification.info/
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For the sequence derived from ti|TC91192|, a full-length cDNA spanning 1792 bp, with a 

864 bp ORF encoding a putative 287 aa protein, was obtained and determined to have 79% aa 

sequence identity to the zebrafish Elovl2-like, and 68-71% aa identity to mammalian (rat, 

mouse and human) ELOVL2-like proteins. This sequence was deposited in the GenBank 

database under the accession number gb|FJ237532|. 

Typically, these newly cloned Elovl5-like and Elovl2-like proteins both possess the 

diagnostic histidine box HXXHH motif (Fig. 1) conserved in all elongases and also 

characteristic of desaturase and hydrolase enzymes containing a di-iron-oxo cluster (Tvrdik et 

al., 2000; Jakobsson et al., 2006). In addition, they possess two lysine or arginine residuals at 

the carboxyl terminus, KXRXX in Elovl5-like and KKXX in Elovl2, which are proposed to 

function as endoplasmic reticulum (ER) retrieval signals (Jakobsson et al., 2006). By 

sequence comparison with a mouse ELOVL2 (Tvrdik et al., 2000), five putative 

transmembrane-spanning domains, containing hydrophobic aa stretches, can be predicted 

(Fig. 1). Noteworthy is the fact that, of the 17 aa residues found by Leonard et al. (2004) to be 

highly conserved across 22 members of the elongase family, one residue has been 

conservatively replaced in SsElovl5b (Leu245 replaced by Phe245). 

A phylogenetic tree was constructed on the basis of the aa sequence alignments between 

the putative two new salmon fatty acyl elongases, and other elongases of fish and mammals 

(Fig 2). The phylogenetic analysis showed that salmon Elovl5a and Elovl5b clustered with 

human ELOVL5 and several other fish proteins. In contrast, the putative salmon Elovl2 

clustered separately from all other Elovl5 proteins and grouped with human ELOVL2 and an 

Elovl from zebrafish. BLASTX searches of the ENSEMBL genomes of T. nigroviridis, T. 

rubripes, G. aculeatus and O. latipes demonstrated that these fish species do not contain 

elovl2 homologues. 
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Functional characterisation  

 

The elongases were functionally characterized by determining the FA profiles of S. cerevisiae 

transformed with pYES2 vector alone or containing elovl5a, elovl5b and elovl2 cDNA ORF 

inserts grown in the presence of potential FA substrates. The FA composition of the wild 

yeast insert is characterised by having essentially only 16:0, 16:1n-7, 18:0 and 18:1n-9 (see 

Hastings et al., 2001). Yeast transformed with vector containing no insert contain these fatty 

acids together with whichever exogenous FA was added, consistent with the well established 

lack of PUFA elongase activity in S. cerevisiae (Agaba et al., 2004; Hastings et al., 2005). 

Heterologous expression of salmon elovl5a in yeast produced similar results to those 

previously observed (Hastings et al., 2005), with activity towards C18 and C20 substrates and 

only residual (1%) C22 to C24 activity (Table 2). The FA compositions of yeast transformed 

with the pYES2-elovl5b construct and grown in the presence of 18:4n-3, 20:5n-3 and 22:5n-3 

are shown in Fig. 3A-C. The traces show the major endogenous FA (16:0, 16:1n-7, 18:0 and 

18:1n-9, peaks 1-4) and additional peaks corresponding to the substrates and elongation 

products. Thus exogenously added 18:4n-3 (peak 6) was elongated to 20:4n-3 (peak 7) and 

22:4n-3 (peak 8) (Fig. 3A), exogenously added 20:5n-3 (peak 9) was elongated to 22:5n-3 

(peak 10) (Fig. 3B), and only a trace of exogenously added 22:5n-3 (peak 10) was elongated 

to 24:5n-3 (peak 11) (Fig. 3C). Other additional peaks including 18:1n-7 (peak 5), 20:1n-9 

and 20:1n-7, indicated some capability of Elovl5b to elongate endogenous monounsaturated 

FAs, as previously observed with Elovl5a (Hastings et al., 2005). Elovl5b elongated 62% of 

18:4n-3 and 71% of 18:3n-6, mainly to the C20 products (58% and 65% converted to 20:4n-3 

and 20:3n-6, respectively), and 69% of 20:5n-3 and 48% of 20:4n-6, but only 1-2% of 22:5n-

3 and 22:4n-6 were converted into 24:5n-3 and 24:4n-6 (Table 2). These data confirmed 

elovl5b as an ELOVL5-like elongase and its functional similarity to elovl5a.  



 14 

The FA compositions of yeast transformed with the pYES2-elovl2 construct and grown in 

the presence of FAs show a distinct pattern (Fig. 3D-F). Exogenously added 18:4n-3 (peak 6) 

was only poorly elongated to 20:4n-3 (peak 7) (Fig. 3D), whereas exogenously added 20:5n-3 

(peak 9) was elongated to 22:5n-3 (peak 10) and, especially, to 24:5n-3 (peak 11) (Fig. 3E), 

and exogenously added 22:5n-3 (peak 10) was substantially elongated to 24:5n-3 (peak 11) 

(Fig. 3F). Thus, only 5% and 12% of 18:4n-3 and 18:3n-6, respectively, were elongated, 

whereas 70% and 59% of 20:5n-3 and 20:4n-6, respectively, were elongated with 52% and 

48% recovered as the C24 products (Table 2). Around 31% and 18% of exogenously added 

22:5n-3 and 22:4n-6 were elongated to 24:5n-3 and 24:4n-6, respectively. Elongation of 

monounsaturated FAs was low, with conversion of 16:1n-7 to 18:1n-7 typically around 4%. 

No evidence for elongation of saturated FAs was observed with any of the salmon Elovls. 

 

Tissue distribution of salmon fatty acyl elongase cDNAs 

 

All three elongase genes in salmon were expressed mostly in intestine (pyloric caeca) and 

liver, followed by brain (Fig. 4). The previously characterized elongase gene, elovl5a, showed 

a more widespread expression than the two new elongase transcripts being also found, albeit 

at a lower level in terms of absolute copy numbers, in gill, kidney, spleen, heart, adipose 

tissue, red muscle and white muscle. In intestine, elovl5a and elovl2 appear to have a similarly 

high expression level, with elovl5b showing significantly lower expression. In liver, no 

significant differences were found, but copy numbers of elovl5b were slightly higher than 

those of the other two transcripts.  

 

Nutritional regulation of salmon fatty acyl elongase expression 
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The regulation of elongase genes, in response to dietary FA composition, was examined in 

liver and intestine of salmon that had been fed diets containing either FO rich in EPA and 

DHA, or VOs rich in C18 FA, RO (18:1n-9), SO (18:2n-6) or LO (18:3n-3). Previously, 

transcriptomic analysis of samples from this VO-feeding experiment revealed changes in the 

transcript levels of genes in response to the FA composition of the diets, but not of elongase 

(Leaver et al., 2008b). However, although the array contained elovl5a, both elovl5b and elovl2 

were absent, and since elovl5a and the newly discovered elovl5b will cross-hybridise, it is not 

surprising that changes in expression were not detected by microarray analysis. However, LC-

HUFA biosynthesis was elevated in these VO-fed salmon (Leaver et al., 2008b), and thus we 

examined the expression of all known salmon elovl genes in the present work through qPCR 

using gene-specific primers. Compared to the FO-fed group, there was a significant increase 

of elovl2 and elovl5b transcripts in the liver of VO-fed fish with normalized expression ratios 

for elovl2 of 2.2, 2.6 and 1.9 for treatments RO, SO and LO, respectively, and a significant 

1.7- and 1.5-fold increase of elovl5b transcript level in fish fed RO and SO diets, respectively 

(Fig. 5A). No significant differences were found between transcript levels for elovl5a in FO-

fed fish and VO-fed fish, or between the different VO dietary treatments for any of the genes. 

For intestine, elongase mRNA showed higher variability within dietary treatments than 

observed in liver, and so no statistically significant differences were found in the relative 

expression of any of the elongase transcripts between fish fed the different dietary treatments 

(Fig. 5B). Nonetheless, the observed trends agreed with the results obtained in liver. Thus, the 

levels of elovl2 transcript in fish fed RO, SO and LO diets were 3.0-, 4.2- and 4.4-fold higher, 

respectively, compared to salmon fed FO. As observed in liver, the level of elovl5a transcripts 

in the intestine was unaffected in fish fed the different VO diets, when compared to the FO 

group, while RO- and SO-fed fish showed a 1.7- and 1.8-fold increase, respectively, in 

elovl5b transcript level compared to the FO treatment. 
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Discussion 

 

Very long chain fatty acyl elongases (ELOVL) are ER membrane-bound proteins responsible 

for the first, regulatory step (condensation of activated FAs with malonyl-CoA) in the FA 

elongation pathway, elongating FA that are biosynthesised de novo or supplied by the diet. 

They belong to a gene family that consists of seven members in mice and humans, which 

differ in FA substrate specificity and have differing spatial and temporal expression patterns 

(Jakobsson et al., 2006). Of these seven ELOVLs enzymes, ELOVL2 and ELOVL5 have 

been demonstrated to have a substrate preference for PUFA. In addition, ELOVL4 is critical 

for normal human and mouse retinal function and there is evidence to indicate that it may also 

be involved specifically in DHA biosynthesis, which is a major membrane component in 

these tissues (Zhang et al., 2001; Jakobsson et al., 2006). In mammals, ELOVL2 has greatest 

activity in the elongation of C20 and C22, but low or, in the case of human, no activity 

towards C18 PUFA (Leonard et al., 2002). In contrast, mammalian ELOVL5 is very active 

towards C18 PUFA but does not appear to have the capacity to elongate beyond C22 

(Leonard et al., 2000; Inagaki et al., 2002). Other species for which a PUFA elongase gene 

has been reported and functionally characterised are the nematode Caenorhabditis elegans 

(Beaudoin et al., 2000) and fungus Mortierella alpina (Parker-Barnes et al., 2000), with these 

enzymes being predominantly active on C18 PUFA with virtually no activity towards C20, 

and the marine microalgae Pavlova, which has a unique specificity towards C20 with no C18 

or C22 activity (Pereira et al., 2004). 

Fish elovl cDNAs have been cloned and functionally characterised from a number of 

species: the freshwater species zebrafish, common carp and tilapia, the salmonids, Atlantic 

salmon and rainbow trout, and the marine species cod, turbot and sea bream (Agaba et al., 
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2004, 2005; Meyer et al., 2004; Hastings et al., 2005). More recently, a fatty acyl elongase 

from masu salmon has been cloned and over-expressed in zebrafish (Alimuddin et al., 2008). 

Phylogenetic analysis groups all these previously described elovl cDNAs into a cluster with 

greatest similarity to mammalian ELOVL5 (Meyer et al., 2004; Agaba et al., 2005; Alimuddin 

et al., 2008). All the fish elovl5 cDNAs tested lengthened monounsaturated FA and n−3 and 

n−6 PUFA with chain lengths from C18 to C22, with residual C22-C24 activity (Agaba et al., 

2004, 2005; Hastings et al., 2005). A rainbow trout Elovl5 has also been described with C18 

to C22, but no C22-24 activity (Meyer et al., 2004). Thus, fish elovl5 appears to have wider 

PUFA specificity than its mammalian homologue, although activity towards C22 is minor, 

compared to C18 and C20 (Agaba et al., 2004, 2005; Hastings et al., 2005). No ELOVL2-like 

genes have been reported so far in a non-mammalian vertebrate. However, searches in the 

GenBank and Atlantic salmon EST databases, as well as in the zebrafish genome, 

demonstrated that a second PUFA elovl gene exists in Atlantic salmon and zebrafish and that 

this gene is clearly related to the mammalian ELOVL2 (Fig. 2). In addition, a second Atlantic 

salmon elovl5 gene, here named elovl5b to distinguish it from the previously cloned salmon 

gene (Hastings et al., 2005), now termed elovl5a, was identified. Preliminary work has 

revealed two distinct genomic sequences corresponding to these two transcripts, indicating 

that they are encoded by separate loci (unpublished results). Given the high degree of 

similarity of these two salmon elovl5 genes (91% and 93% identical at the protein and ORF 

nucleotide sequence level, respectively), we can speculate that they may result from a 

duplicated locus, as the result of the recent salmonid tetraploidisation (Allendorf and 

Thorgaard, 1984). This conclusion is supported by searches of ENSEMBL fish genomes, 

which contain only single copies of elovl5. Analysis of the deduced aa sequences of Elovl5b 

and Elovl2 showed that they possess characteristic features of microsomal membrane-bound 

enzymes, including a single histidine box redox centre motif, a canonical ER retention signal 
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(carboxyl-terminal dilysine/arginine targeting signal) and multiple transmembrane regions 

(Tvrdik et al., 2000; Jakobsson et al., 2006). 

Functional characterisation of the new elovl cDNAs by heterologous expression in yeast 

confirmed the identities predicted by sequence homology and phylogenetic analysis. Elovl5b 

had similar activity to the previously reported salmon Elovl5a (Hastings et al., 2005) and to 

that of other fish Elovl’s which clustered with mammalian ELOVL5 (Agaba et al., 2004, 

2005). The only difference appears to be in terms of the relative conversion of n-3 and n-6 

C18 (but not C20) FAs, as salmon Elovl5a had a preference for n-3 FA substrates, which was 

not apparent in Elovl5b. This preference seems variable as some fish Elovl5 proteins showed 

similar activities with n-3 and n-6 FAs, and cod Elovl5 was more active towards n-6 FAs 

(Agaba et al., 2005). The C18 and C20 PUFA specificity of both salmon Elovl5 proteins was 

generally comparable to that of mammalian ELOVL5 (Leonard et al., 2000; Inagaki et al., 

2002) but a residual activity towards C22 was also measured. In addition, as observed with 

human and rat ELOVL5 homologues (Leonard et al., 2000; Inagaki et al., 2002), some 

capacity to elongate monounsaturated FAs was found for both salmon Elovl5 proteins, as in 

other fishes (Meyer et al., 2004; Agaba et al., 2005). More importantly, the other salmon 

cDNA described here is the first elovl2-like elongase to be cloned and functionally 

characterised in fish. In comparison to mouse ELOVL2 (Leonard et al., 2002), the salmon 

Elovl2 protein showed similar low activity towards C18 and high activity towards C20 and 

C22 but had a low capacity to convert monounsaturated FAs (around 4% conversion of 16:1n-

7), which was not observed in mammalian ELOVL2 (Leonard et al., 2002). Notably, the 

major difference in comparison to fish Elovl5 and mammalian ELOVL5 proteins is the higher 

activity towards C22 LC-PUFA exhibited by Elovl2.  

Other fish EST’s potentially corresponding to putative elovl2 transcript are those of 

zebrafish (gb|NM_001040362|), Pimephales promelas (gb|DT135746|; partial cDNA) and 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=94536612
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Ictalurus punctatus (gb|BM438219.1|; partial cDNA), all Ostareophysian freshwater species. 

Although the analysis of fish ELOVL genes is not yet exhaustive, searches in the pufferfish, 

stickleback and medaka genomes have not indicated the presence of elovl2-like genes and 

thus it is possible to speculate that all fish of the order Acanthopterygii lack ELOVL2 

homologues. Therefore, the characterised elovl5 cDNAs of sea bream, turbot and cod would 

be the sole PUFA elovl gene in these species. Elovl5 proteins have a very limited capacity 

towards C22 and because biosynthesis of DHA in vertebrates requires elongation from C22 to 

a C24 PUFA intermediate, followed by a peroxisomal -oxidation chain-shortening step 

(Buzzi et al., 1997; Sprecher, 2000), fish which lack elovl2 would be restricted in their ability 

to produce this essential FA. In fact where LC-PUFA biosynthesis has been directly measured 

in fish, it is clear that salmonids have substantially greater capacity than marine fish, such as 

sea bass, a member of the Acanthopterygii (Mourente et al., 2005). Previously, the ability of 

both salmon and zebrafish to produce LC-PUFA endogenously has been shown to be due to 

the presence of both 5 and 6 desaturase genes (Hastings et al., 2005; Zheng et al., 2005a), 

which contrasts with the single 6 gene so far discovered in Acanthopterygii (Tocher et al., 

2006). Here we further show that the varying competences of different fish to biosynthesise 

LC-PUFA, particularly DHA, might not only depend on their genome complement of 

desaturase genes but also of elongases. The phylogenetic distribution of the elovl2 gene 

suggests that it must have been lost from the evolutionary line leading to the Acanthopterygii, 

but retained in Ostariophysi (e.g. zebrafish) and Salmoniformes. It is tempting to speculate 

that, since both Ostariophysi and Salmonid fish spend all, or at least a substantial period of 

time in freshwater, the retention of elovl2 and the diversification of desaturase genes is an 

adaptation to the relative deficiency of preformed LC-PUFA in their freshwater habitats 

compared to marine ecosystems, which are fuelled by LC-PUFA producing phytoplankton 

(Sargent et al., 2002; Brett and Muller-Navarra, 1997). Although also speculative, it can be 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=18459941&dopt=GenBank&RID=B5RZA7AG01R&log$=nuclalign&blast_rank=65
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observed that the vast majority of Acanthopterygian species inhabit marine environments. 

Those that inhabit freshwater tend to live in productive lacustrine or large riverine systems. 

Few, if any, exist in the nutrient-poor streams and lakes that salmonids inhabit. 

The tissue distribution profile of salmon elovl5a had been reported previously and agreed 

broadly with that found here (Zheng et al., 2005a). The tissue distribution of elovl5b largely 

resembled that of elovl5a, apart from significantly lower transcript levels in intestine, slightly 

higher in liver and lower in brain. In general, elovl5a, elovl5b and elovl2 are expressed 

predominately in intestine and liver. Since these tissues are the major sites of lipid synthesis 

and distribution, this expression profile is consistent with a role in FA biosynthesis. In the 

remaining tissues tested elovl5a was the most highly expressed. Rat and human ELOVL5 was 

expressed in most tissues examined (Inagaki et al., 2002; Leonard et al., 2000; Wang et al., 

2005) and ELOVL2 transcripts, as in salmon, appeared to have a more restricted distribution 

in mammals (Leonard et al., 2002; Tvrdik et al., 2000; Wang et al., 2005). Salmon brain 

exhibited the third highest expression of the tissues analysed but expression levels of elovl2 

were very low, over one order of magnitude lower than elovl5b and even less than elovl5a. 

This might mean that DHA, which comprises a great proportion of the brain’s cellular 

membranes, either has an exogenous source or that another gene, such as a homologue to the 

mammalian ELOVL4, for instance, is involved in DHA biosynthesis in the brain. This 

hypothesis should be investigated in the future.  

This work has clearly shown that salmon elovl5b and elovl2, but not elovl5a, transcripts 

are increased in response to inclusion of VO in the diet. However, previous studies examining 

the effect of FO replacement by VO in the diets of Atlantic salmon on elovl5a expression 

have yielded inconsistent results (Zheng et al. 2004; Zheng et al., 2005a, 2005b). In 

mammals, ELOVL5 and ELOVL2 expression and regulation has been described. Compared to 

Elovl5, levels of Elovl2 mRNA were low in rat liver (Wang et al., 2005), whilst in salmon 
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these genes are expressed at similar levels. If these transcript levels are reflected in protein 

concentrations then some differences in the relative importance and contribution of elovl2 and 

elovl5 to LC-PUFA synthesis in salmon and rats might be expected. In regard to nutritional 

regulation, Inagaki et al. (2002) reported a lack of dietary regulation, by cycles of fasting-

refeeding, whilst Wang et al. (2005) observed that overnight starvation and feeding FO-

enriched diets decreased Elovl5 mRNA levels in rat liver. No diet-induced changes were 

noted in Elovl2 expression (Wang et al., 2005). Thus, Elovl5 rather than Elovl2 appeared to 

play the major role (along with 5 and 6 desaturases) in response to changes in dietary lipid 

composition in rat (Wang et al., 2005), whilst elovl2 may have a more prominent role in 

salmon. This might not be surprising, considering the differences in dietary regimes of 

mammals and carnivorous fish, particularly concerning the relative supply of C20 and C22 

FAs.  

Hepatic Elovl2 and Elovl5 are both regulated by sterol regulatory element binding protein 

(SREBP) transcription factors in mouse (Horton et al., 2003) and SREBP activation is 

increased by low cholesterol and decreased by increased PUFA (Espenshade, 2006), 

suggesting potential mechanisms for the observed changes in expression of these genes in 

salmon fed VO diets which are low in both PUFA and cholesterol (Leaver, 2008b). These 

increases in elovl2 and elovl5 are important in salmon aquaculture because they enable 

physiological adaptation to VO diets which are deficient in FA greater than 18 carbons, and 

enable LC-PUFA biosynthesis. Moreover, the observed difference in the nutritional regulation 

of elovl5a and elovl5b genes will provide an interesting opportunity to advance our 

knowledge on the regulation and transcriptional control of gene expression, by comparison of 

the presumably very similar upstream regulatory regions of these genes that have resulted 

from a recent gene duplication event.  
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In conclusion, two elovl genes, homologues of mammalian ELOVL2 and ELOVL5, have 

been characterised in Atlantic salmon, which together with the previously characterised 

salmon 5 and 6 fatty acyl desaturases, explain the ability of these fish to biosynthesise LC-

PUFA, including DHA, more efficiently than Acanthopterygian fish species which seem to 

lack an elovl2 gene. This, and the ability of salmon to regulate these genes in response to 

dietary quality, might to some extent also explain the success of salmonids in colonising 

nutrient poor freshwater habitats and to better tolerate VO-based aquaculture diets than 

cultured Acanthopterygians. The results obtained are not only of high relevance in advancing 

our understanding of the molecular basis of LC-PUFA biosynthesis and regulation in fish, but 

also have biotechnological significance. The use of transgenic techniques to enhance EPA and 

DHA biosynthesis is likely to become routine in various organisms of commercial importance 

(Meyer et al., 2004). A previously cloned and characterised zebrafish desaturase (Hastings et 

al., 2001) has already been utilised to produce transgenic Arabidopsis capable of producing 

EPA and DHA at low levels (Robert et al., 2005). The identification of salmon elovl2, a fatty 

acyl elongase with high activity in the penultimate steps of LC-HUFA biosynthesis, might 

provide a route for increasing EPA and DHA production in transgenic organisms. Indeed, 

interest is also likely to become directed towards optimising HUFA biosynthesis pathways 

through transgenic techniques in farmed fish to enable efficient and effective use of dietary 

VO while maintaining the nutritional quality of the fish as a primary source in the human food 

basket of the omega-3 or n-3 LC-PUFA. Alimuddin et al. (2008) have already increased EPA 

and DHA biosynthesis in zebrafish by over-expressing an elovl5-like gene from masu salmon. 

Given the differences in substrate specificity of elovl5 and elovl2, reported here for the first 

time in fish, and the necessity of C22 to C24 PUFA intermediate elongation for DHA 

biosynthesis (Sprecher, 2000), the potential benefits of over-expressing these two genes in 

parallel can easily be recognized. 
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Table 1  

Sequence and annealing temperature (Tm) of the primer pairs used, size of the fragment 

produced and accession number of the sequence used as reference for primer design, for real-

time quantitative PCR (q-PCR) determinations of the transcript level of Atlantic salmon 

elongase genes.  

Transcript Primer name Primer sequence Fragment  Tm Accession No. 
elovl5a Elo1UTR-SM-1F 5’-ACAAGACAGGAATCTCTTTCAGATTAA-3’ 137 bp 60ºC AY170327 

1
 

 Elo1UTR-SM-1R 5’-TCTGGGGTTACTGTGCTATAGTGTAC-3’    

elovl5b Elo2UTR-5F 5’-ACAAAAAGCCATGTTTATCTGAAAGA-3’ 141 bp 60ºC DW546112 
1
 

 Elo2UTR-5R 5’-CACAGCCCCAGAGACCCACTT-3’    

elovl2 Elo2-SM-1F 5’-CGGGTACAAAATGTGCTGGT-3’ 145 bp 60ºC TC91192 
2
  

 Elo2-SM-1R 5’-TCTGTTTGCCGATAGCCATT-3’    

elf-1  ELF-1A jbt2 5’-CTGCCCCTCCAGGACGTTTACAA-3’ 175 bp 60ºC AF321836 
1
 

 ELF-1A jbt2 5’-CACCGGGCATAGCCGATTCC-3’    

-actin BACT-F 5’-ACATCAAGGAGAAGCTGTGC-3’ 141 bp 56ºC AF012125 
1
 

 BACT-R 5’-GACAACGGAACCTCTCGTTA-3’    

unresp. EST B2F 5’-AGCCTATGACCAACCCACTG-3’ 224 bp 60ºC TC63899 2 
 

 B2R 5’-TGTTCACAGCTCGTTTACCG-3’    

18S rRNA ss18S-2F 5’-GGCGCCCCCTCGATGCTCTTA-3’ 189 bp 65ºC AJ427629
1
 

 ss18S-2R 5’-CCCCCGGCCGTCCCTCTTAAT-3’    
1
 GenBank (http://www.ncbi.nlm.nih.gov/) 

2 
Atlantic salmon Gene Index (http://compbio.dfci.harvard.edu/tgi/) 
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Table 2  

Functional characterisation of three Atlantic salmon elongase genes, coding for Elovl5a, 

Elovl5b and Elovl2 proteins. Results are expressed as a percentage of total fatty acid (FA) 

substrate converted to elongated product. Percentage of stepwise conversion into intermediary 

products of the elongation pathway is also shown.  

 

FA Substrate Product Conversion (%) Activity 

  Elovl5a Elovl5b Elovl2  

18:4n-3 20:4n-3 56 58 4 C18 20 

 22:4n-3 7 4 2 C20 22 

 24:4n-3 0 0 0 C22 24 

  Total: 63 Total: 62 Total: 6  

      

18:3n-6 20:3n-6 43 65 7 C18 20 

 22:3n-6 5 6 3 C20 22 

 24:3n-6 0 0 2 C22 24 

  Total: 48 Total: 71 Total: 12  

      

20:5n-3 22:5n-3 36 68 18 C20 22 

 24:5n-3 1 1 52 C22 24 

  Total: 37 Total: 69 Total: 70  

      

20:4n-6 22:4n-6 23 48 11 C20 22 

 24:4n-6 1 1 48 C22 24 

  Total: 24 Total: 49 Total: 59  

      

22:5n-3 24:5n-3 1 1 31 C22 24 

      

22:4n-6 24:4n-6 1 2 18 C22 24 
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Legends to Figures 

 

Fig. 1 ClustalW2 alignment of the deduced amino acid sequences of Atlantic salmon (Salmo 

salar; Ss) elongases, SsElovl5a (Hastings et al., 2005; NP_001117039) and the two newly 

cloned SsElovl5b and SsElovl2 (mRNA sequence deposited in the GenBank database under 

accession numbers gb|FJ237531| and gb| FJ237532|, respectively), together with human 

(Homo sapiens; Hs) elongases, HsELOVL5 (NP_068586) and HsELOVL2 (NP_060240). 

Identical residues are shaded black and similar residues (based on the Gonnet matrix, using 

ClustalW2 default parameters) are shaded grey. Indicated are the conserved histidine box 

motif, characteristic of desaturases and hydrolase enzymes containing a di-iron-oxo cluster 

(underlined), five (I-V) putative membrane-spanning domains predicted by Tvrdik et al. 

(2000) (underlined with dashed line) and, in bold, the lysine or arginine residuals proposed to 

function as ER retrieval signals (Jakobsson et al., 2006). An asterisk indicates the 17 aa 

residues found by Leonard et al. (2004) to be highly conserved across PUFA elongases. 

 

Fig. 2 Phylogenetic tree comparing putative amino acid sequences of Atlantic salmon, Salmo 

salar (Ss), Elovl2 and Elovl5b, cloned in this work, and that of Elol5a (NP_001117039), with 

those of other fatty acyl elongases: Human, Homo sapiens (HsELOVL2 NP_060240 and 

HsELOVL5 NP_068586), zebrafish, Danio rerio (Dr-NP_956747 and Dr-NP_001035452), 

trout, Oncorhynchus mykiss (Om-AAV67803), turbot, Scophthalmus maximus (Sm-

AAL69984), seabream, Sparus aurata (Sa-AAT81404), tilapia, Oreochromis niloticus (On-

AAO13174), cod, Gadus morhua (Gm-AAT81406) and catfish, Clarias gariepinus (Cg-

AAT81405). The tree was constructed using the Neighbour Joining method with ClustalX. 

Numbers represent the frequencies with which the tree topology presented was replicated 

after 1000 bootstrap iterations. The scale refers to the horizontal branch length and 

corresponds to the amino acid substitution rate per site. 
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Fig. 3 Functional characterisation of Atlantic salmon putative fatty acyl elongases, Elovl5b 

(A-C) and Elovl2 (D-F) in transgenic Saccharomyces cerevisiae grown in the presence of n-3 

FAs; 18:4n-3 (A, D); 20:5n-3 (B, E); and 22:5n-3 (C, F).  Fatty acids were extracted from 

yeast transformed with pYES2 vector containing the ORF of the putative fatty acyl elongase 

cDNA as an insert. Peaks 1-4 represent the main endogenous FAs of S. cerevisiae, namely 

16:0 (1), 16:1n-7 (2), 18:0 (3) and 18:1n-9 (4). Peak 5 corresponds to 18:1n-7 resultant from 

the elongation of the yeast endogenous16:1n-7 and the remaining main additional peaks (6-

11) correspond to the exogenously added FAs and the products of their elongation – 18:4n-3 

(6), 20:4n-3 (7), 22:4n-3 (8), 20:5n-3 (9), 22:5n-3 (10), and 24:5n-3 (11). Other minor peaks 

are 18:2n-6, 20:1n-9 and 20:1n-7, the latter two resulting from the elongation of 18:1n-9 and 

18:1n-7 (panels A-C). Vertical axis, FID response; horizontal axis, retention time. 

 

Fig. 4 Tissue expression profile of elovl5a, elovl5b and elovl2 in Atlantic salmon, determined 

by RT-qPCR. Absolute copy numbers were quantified for each transcript and were 

normalized by absolute levels of ribosomal 18s (values shown on top of each column and 

represented diagrammatically in logarithmic scale). I- Intestine, L- liver, WM- white muscle, 

RM- red muscle, K- kidney, SPL- spleen, H- heart, BR- brain. Results are means (n=3)  S.D. 

Different letters in intestine and liver columns indicate significant differences (P<0.05) 

between transcripts in those tissues.  

 

Fig. 5 Nutritional regulation of elongase genes elovl5a, elovl5b and elovl2, in Atlantic salmon 

fed diets containing fish oil (FO), rapeseed oil (RO), soybean oil (SO) or linseed oil (LO), in 

the liver (A) and intestine (B) tissues, determined by RT-qPCR. The results shown are the 

normalised expression ratio (reference genes: elf-1 , -actin and a flatliner EST) of the target 
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transcripts in one of the VO treatments (RO, SO or LO), in relation to the FO control 

treatment. Values are means (n=5) with S.E. and asterisks represent significant differences 

(P<0.05) between the column’s dietary treatment and the FO treatment, for the respective 

transcript (REST-MCS-2006). 
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Fig 5 


