54 research outputs found

    A 2.15 Hour Orbital Period for the Low Mass X-Ray Binary XB 1832-330 in the Globular Cluster NGC 6652

    Full text link
    We present a candidate orbital period for the low mass X-ray binary XB 1832-330 in the globular cluster NGC 6652 using a 6.5 hour Gemini South observation of the optical counterpart of the system. Light curves in g' and r' for two LMXBs in the cluster, sources A and B in previous literature, were extracted and analyzed for periodicity using the ISIS image subtraction package. A clear sinusoidal modulation is evident in both of A's curves, of amplitude ~0.11 magnitudes in g' and ~0.065 magnitudes in r', while B's curves exhibit rapid flickering, of amplitude ~1 magnitude in g' and ~0.5 magnitudes in r'. A Lomb-Scargle test revealed a 2.15 hour periodic variation in the magnitude of A with a false alarm probability less than 10^-11, and no significant periodicity in the light curve for B. Though it is possible saturated stars in the vicinity of our sources partially contaminated our signal, the identification of A's binary period is nonetheless robust.Comment: 7 pages, 7 figures, ApJ in pres

    Chemical variability and chemotype concept of essential oils from Algerian wild plants

    Get PDF
    The chemical compositions of eleven wild species of aromatic and medicinal plants indigenous to Algeria, including Thymus, Mentha, Rosmarinus, Lavandula, and Eucalyptus, were analyzed. The identification of the chemical composition of each oil was conducted using GC-FID and GC-MS capillary gas chromatography. The study investigated the chemical variability of the essential oils based on several parameters. These included the impact of the vegetative cycle on oil composition, variations among subspecies of the same species, variations among species within the same genus, the influence of environmental factors on composition variations within a species, chemo typing, and the genetic factors (such as hybridization) contributing to chemical variability. The concepts of chemotaxonomy, chemotype, and chemical markers were examined to understand their limitations and emphasize the importance of regulating the use of essential oils derived from wild plants. The study advocates for an approach that involves the domestication of wild plants and screening their chemical compositions according to more specific standards for each commercially available oil. Lastly, the nutritional implications and the variability of nutritional impact based on the chemical composition of the essential oils will be discussed

    Sensitivity Analysis of Risk Assessment with Data-Driven Dependence Modeling

    Get PDF
    International audienceThe reliability analysis of complex systems often requires dealing with a computationally expensive simulation code. To estimate the failure probability, a frequently used method aims at propagating the input uncertainties through the black-box model. In this paper, as marginal distributions are assumed provided, the lack of knowledge about the joint distribution of input variables is limited to a copula distribution learnt from an industrial dataset obtained during past experiences. To describe complex and polymorphic patterns of dependence, attention has turned to vine copulas whose main advantage rests on their ability to approximate the whole dependence structure with a simple product of judiciously-selected bivariate copulas. The presented approach couples vine copula fitting to model the joint distribution on input variables and importance sampling to estimate the failure probability. For a given training set, the matrix of Kendall’s rank correlation coefficients, which collects information about dependence intensities, is deeply involved in the inferential procedure leading to the copula vine specification. In this work, a sensitivity analysis is performed to measure the impact of Kendall’s matrix uncertainty due to scarce data on the estimation of the failure probability. As Kendall’s coefficients are dependent random variables, sensitivity analysis is achieved with Borgonovo’s indices, using bootstrap replications of the available data to have a larger amount of estimations. The ranking of sensitivity indices allows identifying the pair of variables on which one has to acquire new samples in order to reduce variability in risk assessment. This methodology is applied on the buckling of a composite plate

    Bearing diagnostics under strong electromagnetic interference based on Integrated Spectral Coherence

    No full text
    Rolling element bearing fault diagnostics has been a topic of intensive research in recent decades, as they are critical components of rotating machinery and therefore their failure may result in sudden breakdown of machines and industrial installations. The early and accurate detection of incipient faults on bearings can reduce the production cost by allowing maintenance engineers to schedule a replacement at the most convenient time. Envelope Analysis is a widespread powerful method in bearing diagnostics, often used along with Fast Kurtogram. However, the presence of ElectroMagnetic Interference (EMI) and generally speaking of impulsive and non gaussian noise, increases the complexity of bearing fault diagnosis and may lead to rather poor diagnostic performance. EMI is often present in mechanisms and machines, where motors are controlled by Variable-Frequency Drives (VFD) and can present a vibration signature similar to that of bearing faults. Therefore, the main aim of this paper is the proposal of advanced signal processing techniques, which can detect bearing faults under the presence of strong ElectroMagnetic Interference or other impulsive noise (where state of the art methods fail). Two novel diagnostic methodologies are proposed based on the Cyclic Spectral Coherence (CSCoh). The integration of the CSCoh, over the full spectral frequency axis or over a specific spectral frequency band, results respectively in the Enhanced Envelope Spectrum or in the Improved Envelope Spectrum. The two novel diagnostic methodologies allow for the automatic selection and integration of the optimal bands on the CSCoh under heavy impulsive noise, such as EMI, resulting in a spectrum with enhanced characteristic bearing fault frequencies, without any human intervention required besides the knowledge of the characteristic fault frequency which is under investigation. The methods are applied on vibration data, captured on an epicyclic gearbox with seeded bearing faults, operating under the influence of strong EMI. The methods are tested and evaluated on different fault cases and achieve improved performance compared to state of the art diagnostic methodologies.status: publishe

    Bearing diagnostics under strong electromagnetic interference based on Integrated Spectral Coherence

    No full text
    Rolling element bearing fault diagnostics has been a topic of intensive research in recent decades, as they are critical components of rotating machinery and therefore their failure may result in sudden breakdown of machines and industrial installations. The early and accurate detection of incipient faults on bearings can reduce the production cost by allowing maintenance engineers to schedule a replacement at the most convenient time. Envelope Analysis is a widespread powerful method in bearing diagnostics, often used along with Fast Kurtogram. However, the presence of ElectroMagnetic Interference (EMI) and generally speaking of impulsive and non gaussian noise, increases the complexity of bearing fault diagnosis and may lead to rather poor diagnostic performance. EMI is often present in mechanisms and machines, where motors are controlled by Variable-Frequency Drives (VFD) and can present a vibration signature similar to that of bearing faults. Therefore, the main aim of this paper is the proposal of advanced signal processing techniques, which can detect bearing faults under the presence of strong ElectroMagnetic Interference or other impulsive noise (where state of the art methods fail). Two novel diagnostic methodologies are proposed based on the Cyclic Spectral Coherence (CSCoh). The integration of the CSCoh, over the full spectral frequency axis or over a specific spectral frequency band, results respectively in the Enhanced Envelope Spectrum or in the Improved Envelope Spectrum. The two novel diagnostic methodologies allow for the automatic selection and integration of the optimal bands on the CSCoh under heavy impulsive noise, such as EMI, resulting in a spectrum with enhanced characteristic bearing fault frequencies, without any human intervention required besides the knowledge of the characteristic fault frequency which is under investigation. The methods are applied on vibration data, captured on an epicyclic gearbox with seeded bearing faults, operating under the influence of strong EMI. The methods are tested and evaluated on different fault cases and achieve improved performance compared to state of the art diagnostic methodologies.status: publishe

    Global gyrokinetic simulations of trapped-electron mode and trapped-ion mode microturbulence

    No full text
    Équipe 107 : Physique des plasmas chaudsInternational audienceThis paper presents a reduced kinetic model, which describes simultaneously trapped-ion (TIM) and trapped-electron (TEM) driven modes. Interestingly, the model enables the study of a full f problem for ion and electron trapped particles at very low numerical cost. The linear growth rate obtained with the full f nonlinear code Trapped Element REduction in Semi Lagrangian Approach is successfully compared with analytical predictions. Moreover, nonlinear results show some basic properties of collisionless TEM and TIM turbulence in tokamaks. A competition between streamer-like structures and zonal flows is observed for TEM and TIM turbulence. Zonal flows are shown to play an important role in suppressing the nonlinear transport and strongly depend on the temperature ratio T-e/T-i
    • 

    corecore