10 research outputs found
Battle of the Attack Detection Algorithms:Disclosing cyber attacks on water distribution networks
The BATtle of the Attack Detection ALgorithms (BATADAL) is the most recent competition on planning and management of water networks undertaken within the Water Distribution Systems Analysis Symposium. The goal of the battle was to compare the performance of algorithms for the detection of cyber-physical attacks, whose frequency increased in the past few years along with the adoption of smart water technologies. The design challenge was set for C-Town network, a real-world, medium-sized water distribution system operated through Programmable Logic Controllers and a Supervisory Control And Data Acquisition (SCADA) system. Participants were provided with datasets containing (simulated) SCADA observations, and challenged with the design of an attack detection algorithm. The effectiveness of all submitted algorithms was evaluated in terms of time-to-detection and classification accuracy. Seven teams participated in the battle and proposed a variety of successful approaches leveraging data analysis, model-based detection mechanisms, and rule checking. Results were presented at the Water Distribution Systems Analysis Symposium (World Environmental & Water Resources Congress), in Sacramento, on May 21-25, 2017. This paper summarizes the BATADAL problem, proposed algorithms, results, and future research directions
Genetic variants in the Carnosine-Carnosinase system and their impact on diabetic nephropathy
Role of sestrin2 in the regulation of ER stress and pro-inflammation under diabetes with dyslipidemia
Ruzicka Indexed Regressive Homomorphic Ephemeral Key Benaloh Cryptography for Secure Data Aggregation in WSN
</jats:p
Asymmetric dimethylarginine (ADMA) accelerates renal cell fibrosis under high glucose condition through NOX4/ROS/ERK signaling pathway
AbstractWe previously reported that the circulatory level of Asymmetric dimethylarginine (ADMA), an endogenous competitive inhibitor of nitric oxide synthase, was increased in diabetic kidney disease patients. However, the mechanism and the role of ADMA in diabetic kidney injury remain unclear. Hence, our principal aim is to investigate the causal role of ADMA in the progression of renal cell fibrosis under high glucose (HG) treatment and to delineate its signaling alterations in kidney cell injury. High Glucose/ADMA significantly increased fibrotic events including cell migration, invasion and proliferation along with fibrotic markers in the renal cells; whereas ADMA inhibition reversed the renal cell fibrosis. To delineate the central role of ADMA induced fibrotic signaling pathway and its downstream signaling, we analysed the expression levels of fibrotic markers, NOX4, ROS and ERK activity by using specific inhibitors and genetic manipulation techniques. ADMA stimulated the ROS generation along with a significant increase in NOX4 and ERK activity. Further, we observed that ADMA activated NOX-4 and ERK are involved in the extracellular matrix proteins accumulation. Also, we observed that ADMA induced ERK1/2 phosphorylation was decreased after NOX4 silencing. Our study mechanistically demonstrates that ADMA is involved in the progression of kidney cell injury under high glucose condition by targeting coordinated complex mechanisms involving the NOX4- ROS-ERK pathway.</jats:p
Association of circulatory asymmetric dimethylarginine (ADMA) with diabetic nephropathy in Asian Indians and its causative role in renal cell injury
Augmentation of RBP4/STRA6 signaling leads to insulin resistance and inflammation and the plausible therapeutic role of vildagliptin and metformin
Lamport Certificateless Signcryption Deep Neural Networks for Data Aggregation Security in WSN
Battle of the Attack Detection Algorithms:Disclosing cyber attacks on water distribution networks
The BATtle of the Attack Detection ALgorithms (BATADAL) is the most recent competition on planning and management of water networks undertaken within the Water Distribution Systems Analysis Symposium. The goal of the battle was to compare the performance of algorithms for the detection of cyber-physical attacks, whose frequency has increased in the last few years along with the adoption of smart water technologies. The design challenge was set for the C-Town network, a real-world, medium-sized water distribution system operated through programmable logic controllers and a supervisory control and data acquisition (SCADA) system. Participants were provided with data sets containing (simulated) SCADA observations, and challenged to design an attack detection algorithm. The effectiveness of all submitted algorithms was evaluated in terms of time-to-detection and classification accuracy. Seven teams participated in the battle and proposed a variety of successful approaches leveraging data analysis, model-based detection mechanisms, and rule checking. Results were presented at the Water Distribution Systems Analysis Symposium (World Environmental and Water Resources Congress) in Sacramento, California on May 21-25, 2017. This paper summarizes the BATADAL problem, proposed algorithms, results, and future research directions.</p
