25 research outputs found

    Rice Seedling Growth Promotion by Biochar Varies With Genotypes and Application Dosages

    Get PDF
    While biochar use in agriculture is widely advocated, how the effect of biochar on plant growth varies with biochar forms and crop genotypes is poorly addressed. The role of dissolvable organic matter (DOM) in plant growth has been increasingly addressed for crop production with biochar. In this study, a hydroponic culture of rice seedling growth of two cultivars was treated with bulk mass (DOM-containing), water extract (DOM only), and extracted residue (DOM-free) of maize residue biochar, at a volumetric dosage of 0.01, 0.05, and 0.1%, respectively. On seedling root growth of the two cultivars, bulk biochar exerted a generally negative effect, while the biochar extract had a consistently positive effect across the application dosages. Differently, the extracted biochar showed a contrasting effect between genotypes. In another hydroponic culture with Wuyunjing 7 treated with biochar extract at sequential dosages, seedling growth was promoted by 95% at 0.01% dosage but by 26% at 0.1% dosage, explained with the great promotion of secondary roots rather than of primary roots. Such effects were likely explained by low molecular weight organic acids and nanoparticles contained in the biochar DOM. This study highlights the importance of biochar DOM and crop genotype when evaluating the effect of biochar on plants. The use of low dosage of biochar DOM could help farmers to adopt biochar technology as a solution for agricultural sustainability

    Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice

    Get PDF
    Biochar-based compound fertilizers (BCF) and amendments have proven to enhance crop yields and modify soil properties (pH, nutrients, organic matter, structure etc.) and are now in commercial production in China. While there is a good understanding of the changes in soil properties following biochar addition, the interactions within the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties alone. We investigated the rhizosphere interactions following the addition of an activated wheat straw BCF at an application rates of 0.25% (g·g−1 soil), which could potentially explain the increase of plant biomass (by 67%), herbage N (by 40%) and P (by 46%) uptake in the rice plants grown in the BCF-treated soil, compared to the rice plants grown in the soil with conventional fertilizer alone. Examination of the roots revealed that micron and submicron-sized biochar were embedded in the plaque layer. BCF increased soil Eh by 85 mV and increased the potential difference between the rhizosphere soil and the root membrane by 65 mV. This increased potential difference lowered the free energy required for root nutrient accumulation, potentially explaining greater plant nutrient content and biomass. We also demonstrate an increased abundance of plant-growth promoting bacteria and fungi in the rhizosphere. We suggest that the redox properties of the biochar cause major changes in electron status of rhizosphere soils that drive the observed agronomic benefits

    Characterization of the Organic Components in Mixed Feedstock Biochars

    Full text link
    Large areas of agricultural land are being degraded due to the rapid growth in population and poor land management strategies. Biochar has the potential to serve as a soil amendment. Biochar, which includes organic and inorganic components, is obtained from pyrolysis of feedstocks at low temperatures under a limited supply of oxygen. Biochar properties are influenced by feedstock composition and pyrolysis conditions.To produce a value-added biochar and reduce production costs, this project investigates two innovative strategies: 1) production of mixed-feedstock-biochars rather than single-feedstock-biochar since they can provide almost all plant nutrient requirements 2) Converting nutrient-rich-biowaste into an engineered biochar through a controlled pyrolysis conditions. However, the agronomic benefits of biochar are dependent on its structural characteristics, which will, in turn, affect soil properties once it is applied. In particular, characterization of the organic component of biochar is essential since organic compounds influence soil organic matter and nutrient availability.The objective of this project is to characterise, using a range of advanced analytical techniques, the properties of the organic components in: 1) mixed-feedstock-biochars, produced from a mixture of wheat straw and chicken litter, and a combination of wheat straw and basalt, 2) biochars produced from municipal solid waste at three temperatures (ranging from 450-650 °C). The positive effects of these available feedstocks on soils have been individually documented.High temperature biochars had a high C and ash contents, but low O and H contents. Increases in pyrolysis temperature led to aromatic C structures and developed pores. Thus, the biochars surfaces were thermally activated to absorb nutrient elements that can further affect plant growth. Conversely, to preserve the N content, biochars should be produced at lower temperatures (<550 °C), since nitrogen was removed as a volatile matter during heat treatment. A significant decrease was observed in the concentration of dissolved organic carbon during pyrolysis, with an associated decomposition of hydrophilic fractions into low molecular weight acids (about 50%).Overall, it is possible to match biochar with specific soil to address different soil requirements. The novelty of this project is to develop engineered biochars and manage waste, with economic and environmental benefits

    Characterization of organic compounds in biochars derived from municipal solid waste

    No full text
    Municipal solid waste (MSW) generation has been growing in many countries, which has led to numerous environmental problems. Converting MSW into a valuable biochar-based by-product can manage waste and, possibly, improve soil fertility, depending on the soil properties. In this study, MSW-based biochars, collected from domestic waste materials and kerbsides in two Sydney's regions, were composted and pyrolysed at 450 °C, 550 °C and 650 °C. The characteristics of the organic components and their interactions with mineral phases were investigated using a range of analytical techniques, with special attention given to polycyclic aromatic hydrocarbons and heavy metal concentrations. The MSW biochar prepared at 450 °C contained the most complex organic compounds. The highest concentration of fixed C, indicating the stability of biochar, was detected in the high-temperature-biochar. Microscopic analysis showed development of pores and migration of mineral phases, mainly Ca/P/O-rich phases, into the micro-pores and Si/Al/O-rich phases on the surface of the biochar in the MSW biochar produced at 550 °C. Amalgamation of organic phases with mineral compounds was observed, at higher pyrolysis temperatures, indicating chemical reactions between these two phases at 650 °C. XPS analysis showed the main changes occurred in C and N bonds. During heat treatment, N-C/C=N functionalities decomposed and oxidized N configurations, mainly pyridine-N-oxide groups, were formed. The majority of the dissolved organic carbon fraction in both MSW biochar produced at 450 °C and 550 °C was in the form of building blocks, whereas LMW acids was the main fraction in high-temperature-biochar (59.9%). © 2017 Elsevier Lt

    Mineral nitrogen captured in field-aged biochar is plant-available

    Get PDF
    © 2020, The Author(s). Biochar may serve as a tool to sustainably mitigate climate change via carbon sequestration and by improving soil fertility. Biochar has shown to retain nitrate in its pores, which increases with an organic coating of the inner surfaces and residence time in soil (“aging”). Here we investigated the plant accessibility of the captured nitrate in field-aged biochar, as a pre-requisite for developing carbon-based N fertilization techniques with environmental benefits. Based on previous results, we hypothesized that part of the biochar-captured nitrate would remain unavailable for plants. A two-factorial greenhouse experiment was designed, where the N was applied either as Ca(NO3)2 or as N captured in field-aged biochar at five increasing N doses to quinoa and perennial ryegrass in pots. Interestingly, the biochar-captured N was as plant available as the mineral nitrate, except for the highest dosage. Refuting our hypothesis, no significant amounts of N were extractable at the end of the study from the biochar–soil mixtures with repeated-extraction protocols. Thus, N captured by biochar may improve the N use efficiency in agriculture. Further research should evaluate the role of biochar particle size, root morphology, mycorrhization, and soil moisture (variations) for nitrate retrieval from biochar particles by plants because the captured biochar N was less available in the field as under present controlled conditions

    The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics

    Get PDF
    A multi-season field trial was carried out to investigate the effect of the amendment of biochar, lime, ash and washed biochar on the growth of maize. A degraded, strongly acidic Ultisol (pHKCl 3.60), with a relatively high exchangeable aluminium content (2.4 cmolc/kg) and a low exchangeable calcium content (0.99 cmolc/kg), was used. Soil was treated once at the beginning of the field trial and crop growth was monitored over seven planting seasons (PS). All treatments increased maize yield. The average increases were; seven times for biochar, five times for lime, five times for washed biochar and eight times for ash treatment, when compared to the control across all PS. The effect of biochar, lime and ash treatments on maize yield were sustained over the seven PS. Soil pHKCl was significantly increased (p < 0.05 level) following the addition of all of the amendment materials. All treatments significantly reduced the concentration of Al3+ when compared to the control (p < 0.05), with the lowest concentrations for the lime and ash treatments. The ash treatment also increased the concentration of macronutrients (K, P and Mg) to the greatest extent. Results showed that there was a clear liming effect at play. The better performance of biochar compared to lime, despite lime having the highest pH and the lowest Al3+ concentration, can be explained by the additional K, Mg and P the biochar adds to the soil. Results also showed a clear nutrient addition effect where ash added the most nutrients. Overall, this work supports the fact that small scale farmers in Indonesia should produce biochar from their waste agricultural materials. Doing so not only provides an increase in crop productivity, but also sequesters carbon resulting in the best overall environmental benefit

    The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics

    Get PDF
    A multi-season field trial was carried out to investigate the effect of the amendment of biochar, lime, ash and washed biochar on the growth of maize. A degraded, strongly acidic Ultisol (pHKCl 3.60), with a relatively high exchangeable aluminium content (2.4 cmolc/kg) and a low exchangeable calcium content (0.99 cmolc/kg), was used. Soil was treated once at the beginning of the field trial and crop growth was monitored over seven planting seasons (PS). All treatments increased maize yield. The average increases were; seven times for biochar, five times for lime, five times for washed biochar and eight times for ash treatment, when compared to the control across all PS. The effect of biochar, lime and ash treatments on maize yield were sustained over the seven PS. Soil pHKCl was significantly increased (p < 0.05 level) following the addition of all of the amendment materials. All treatments significantly reduced the concentration of Al3+ when compared to the control (p < 0.05), with the lowest concentrations for the lime and ash treatments. The ash treatment also increased the concentration of macronutrients (K, P and Mg) to the greatest extent. Results showed that there was a clear liming effect at play. The better performance of biochar compared to lime, despite lime having the highest pH and the lowest Al3+ concentration, can be explained by the additional K, Mg and P the biochar adds to the soil. Results also showed a clear nutrient addition effect where ash added the most nutrients. Overall, this work supports the fact that small scale farmers in Indonesia should produce biochar from their waste agricultural materials. Doing so not only provides an increase in crop productivity, but also sequesters carbon resulting in the best overall environmental benefit.publishedVersio

    Mineral nitrogen captured in field-aged biochar is plant-available

    No full text
    Abstract Biochar may serve as a tool to sustainably mitigate climate change via carbon sequestration and by improving soil fertility. Biochar has shown to retain nitrate in its pores, which increases with an organic coating of the inner surfaces and residence time in soil (“aging”). Here we investigated the plant accessibility of the captured nitrate in field-aged biochar, as a pre-requisite for developing carbon-based N fertilization techniques with environmental benefits. Based on previous results, we hypothesized that part of the biochar-captured nitrate would remain unavailable for plants. A two-factorial greenhouse experiment was designed, where the N was applied either as Ca(NO3)2 or as N captured in field-aged biochar at five increasing N doses to quinoa and perennial ryegrass in pots. Interestingly, the biochar-captured N was as plant available as the mineral nitrate, except for the highest dosage. Refuting our hypothesis, no significant amounts of N were extractable at the end of the study from the biochar–soil mixtures with repeated-extraction protocols. Thus, N captured by biochar may improve the N use efficiency in agriculture. Further research should evaluate the role of biochar particle size, root morphology, mycorrhization, and soil moisture (variations) for nitrate retrieval from biochar particles by plants because the captured biochar N was less available in the field as under present controlled conditions

    Wheat straw vinegar: A more cost-effective solution than chemical fungicides for sustainable wheat plant protection

    No full text
    © 2018 Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive and widespread wheat disease. Chemical fungicides are becoming less effective at reducing the disease severity of FHB, and there is a need to find a more effective, low-cost natural product. A by-product of the pyrolysis of wheat straw is a condensate known as wheat straw vinegar, which was hypothesized to be an effective F. graminearum inhibitor in wheat. The organic and mineral compositions of wheat straw vinegar were analyzed. The results of GC–MS indicated that the major organic compounds in wheat straw vinegar are phenolics and acetic acid. The main inorganic elements in the liquid were K, Ca, S and Mg. A bio-test of wheat straw vinegar showed strong antifungal activity on F. graminearum growth and production of deoxynivalenol (DON) with an EC50 (concentration for 50% of maximal effect) value of 3.1 μl ml−1. Field tests showed that the application of wheat straw vinegar diluted 200-fold significantly decreased the wheat FHB infection rate and DON content by 66% and 69%, respectively. The control efficacy of wheat straw vinegar at a dilution of 200-fold was similar to that of typical chemical fungicide applications. The use of wheat straw vinegar may increase farmers\u27 income by reducing the net fungicide costs. Therefore, wheat straw vinegar has high potential as a natural fungicide for the control of FHB and can reduce the dependence on synthetic fungicides
    corecore