526 research outputs found

    ReadOut: structure-based calculation of direct and indirect readout energies and specificities for protein–DNA recognition

    Get PDF
    Protein–DNA interactions play a central role in regulatory processes at the genetic level. DNA-binding proteins recognize their targets by direct base–amino acid interactions and indirect conformational energy contribution from DNA deformations and elasticity. Knowledge-based approach based on the statistical analysis of protein–DNA complex structures has been successfully used to calculate interaction energies and specificities of direct and indirect readouts in protein–DNA recognition. Here, we have implemented the method as a webserver, which calculates direct and indirect readout energies and Z-scores, as a measure of specificity, using atomic coordinates of protein–DNA complexes. This server is freely available at . The only input to this webserver is the Protein Data Bank (PDB) style coordinate data of atoms or the PDB code itself. The server returns total energy Z-scores, which estimate the degree of sequence specificity of the protein–DNA complex. This webserver is expected to be useful for estimating interaction energy and DNA conformation energy, and relative contributions to the specificity from direct and indirect readout. It may also be useful for checking the quality of protein–DNA complex structures, and for engineering proteins and target DNAs

    Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis

    Get PDF
    Biomass deconstruction remains integral for enabling second‐generation biofuel production at scale. However, several steps necessary to achieve significant solubilization of biomass, notably harsh pretreatment conditions, impose economic barriers to commercialization. By employing hyperthermostable cellulase machinery, biomass deconstruction can be made more efficient, leading to milder pretreatment conditions and ultimately lower production costs. The hyperthermophilic bacterium Caldicellulosiruptor bescii produces extremely active hyperthermostable cellulases, including the hyperactive multifunctional cellulase CbCel9A/Cel48A. Recombinant CbCel9A/Cel48A components have been previously produced in Escherichia coli and integrated into synthetic hyperthermophilic designer cellulosome complexes. Since then, glycosylation has been shown to be vital for the high activity and stability of CbCel9A/Cel48A. Here, we studied the impact of glycosylation on a hyperthermostable designer cellulosome system in which two of the cellulosomal components, the scaffoldin and the GH9 domain of CbCel9A/Cel48A, were glycosylated as a consequence of employing Ca. bescii as an expression host. Inclusion of the glycosylated components yielded an active cellulosome system that exhibited long‐term stability at 75 °C. The resulting glycosylated designer cellulosomes showed significantly greater synergistic activity compared to the enzymatic components alone, as well as higher thermostability than the analogous nonglycosylated designer cellulosomes. These results indicate that glycosylation can be used as an essential engineering tool to improve the properties of designer cellulosomes. Additionally, Ca. bescii was shown to be an attractive candidate for production of glycosylated designer cellulosome components, which may further promote the viability of this bacterium both as a cellulase expression host and as a potential consolidated bioprocessing platform organism

    Differential second-degree of freedom centrifugal microfluidics

    Get PDF
    A Second-Degree of Freedom Centrifugal Platform has been developed which is enabled by a differential gearing system. This system permits the rotation of fluidic chips during centrifugation controlled by two stationary stepper motors. This approach offers key advantages of low-cost, simplicity, and reliability over existing approaches which utilize complex, specialized and expensive electrical slip-rings or wireless power transfer to enable the same concept. The potential of the platform is demonstrated by implementing, using dyed water, the fluidic steps required for DNA purification

    Evaluation of the capability of the PCV2 genome to encode miRNAs : lack of viral miRNA expression in an experimental infection

    Get PDF
    Porcine circovirus type 2 (PCV2) is a ssDNA virus causing PCV2-systemic disease (PCV2-SD), one of the most important diseases in swine. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. Viral miRNAs have recently been described and the number of viral miRNAs has been increasing in the past few years. In this study, small RNA libraries were constructed from two tissues of subclinically PCV2 infected pigs to explore if PCV2 can encode viral miRNAs. The deep sequencing data revealed that PCV2 does not express miRNAs in an in vivo subclinical infection

    Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis

    Get PDF
    Biomass deconstruction remains integral for enabling second‐generation biofuel production at scale. However, several steps necessary to achieve significant solubilization of biomass, notably harsh pretreatment conditions, impose economic barriers to commercialization. By employing hyperthermostable cellulase machinery, biomass deconstruction can be made more efficient, leading to milder pretreatment conditions and ultimately lower production costs. The hyperthermophilic bacterium Caldicellulosiruptor bescii produces extremely active hyperthermostable cellulases, including the hyperactive multifunctional cellulase CbCel9A/Cel48A. Recombinant CbCel9A/Cel48A components have been previously produced in Escherichia coli and integrated into synthetic hyperthermophilic designer cellulosome complexes. Since then, glycosylation has been shown to be vital for the high activity and stability of CbCel9A/Cel48A. Here, we studied the impact of glycosylation on a hyperthermostable designer cellulosome system in which two of the cellulosomal components, the scaffoldin and the GH9 domain of CbCel9A/Cel48A, were glycosylated as a consequence of employing Ca. bescii as an expression host. Inclusion of the glycosylated components yielded an active cellulosome system that exhibited long‐term stability at 75 °C. The resulting glycosylated designer cellulosomes showed significantly greater synergistic activity compared to the enzymatic components alone, as well as higher thermostability than the analogous nonglycosylated designer cellulosomes. These results indicate that glycosylation can be used as an essential engineering tool to improve the properties of designer cellulosomes. Additionally, Ca. bescii was shown to be an attractive candidate for production of glycosylated designer cellulosome components, which may further promote the viability of this bacterium both as a cellulase expression host and as a potential consolidated bioprocessing platform organism

    Siphon-Controlled Automation on a Lab-on-a-Disc Using Event-Triggered Dissolvable Film Valves

    Get PDF
    Within microfluidic technologies, the centrifugal microfluidic "Lab-on-a-Disc" (LoaD) platform offers great potential for use at the PoC and in low-resource settings due to its robustness and the ability to port and miniaturize \u27wet bench\u27 laboratory protocols. We present the combination of \u27event-triggered dissolvable film valves\u27 with a centrifugo-pneumatic siphon structure to enable control and timing, through changes in disc spin-speed, of the release and incubations of eight samples/reagents/wash buffers. Based on these microfluidic techniques, we integrated and automated a chemiluminescent immunoassay for detection of the CVD risk factor marker C-reactive protein displaying a limit of detection (LOD) of 44.87 ng mL−1^{-1} and limit of quantitation (LoQ) of 135.87 ng mL−1^{-1}

    Total knee arthroplasty: good agreement of clinical severity scores between patients and consultants

    Get PDF
    BACKGROUND: Nearly 20,000 patients per year in the UK receive total knee arthroplasty (TKA). One of the problems faced by the health services of many developed countries is the length of time patients spend waiting for elective treatment. We therefore report the results of a study in which the Salisbury Priority Scoring System (SPSS) was used by both the surgeon and their patients to ascertain whether there were differences between the surgeon generated and patient generated Salisbury Priority Scores. METHODS: The Salisbury Priority Scoring System (SPSS) was used to assign relative priority to patients with knee osteoarthritis as part of a randomised controlled trial comparing the standard medial parapatellar approach versus the sub-vastus approach in TKA. The operating surgeons and each patient completed the SPSS at the same pre-assessment clinic. The SPSS assesses four criteria, namely progression of disease, pain or distress, disability or dependence on others, and loss of usual occupation. Crosstabs and agreement measures (Cohen's kappa) were performed. RESULTS: Overall, the four SPSS criteria showed a kappa value of 0.526, 0.796, 0.813, and 0.820, respectively, showing moderate to very good agreement between the patient and the operating consultant. Male patients showed better agreement than female patients. CONCLUSION: The Salisbury Priority Scoring System is a good means of assessing patients' needs in relation to elective surgery, with high agreement between the patient and the operating surgeon
    • 

    corecore