8 research outputs found

    HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons

    No full text
    Environmental and genetic risk factors contribute to Parkinson's Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.publishe

    Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation

    Get PDF
    Parkinson's disease (PD) is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC)-derived midbrain dopamine (mDA) neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets

    Adipositas, Kognition und Entscheidungsverhalten

    No full text
    Entscheidungen zu fällen, ist ein integraler Bestandteil des täglichen Lebens. Im Kontext von Adipositas sind Entscheidungen von besonderem Interesse, die das Essverhalten und die physische Aktivität beeinflussen. Wie wir uns letztendlich entscheiden, hängt von einer Fülle von Faktoren ab. Diese sind unter anderem der erwartete Belohnungswert, der Aufwand, den es aufzubringen gilt, ob wir alle Alternativen kennen und schon Erfahrungen damit gesammelt haben, aber auch welche ausdrücklichen Ziele wir uns gesteckt haben. Zusätzlich bestimmt unser Gehirn, wie wahrscheinlich es ist, dass wir uns für die eine oder andere Alternative entscheiden. Warum aber fällt es Menschen mit Adipositas so schwer, ihr Verhalten so zu steuern, dass es mit ihren ausdrücklich formulierten Zielen übereinstimmt? Könnte es sein, dass Gehirnsysteme, welche die Entscheidungsfindung stützen, als Folge von Adipositas verändert sind? In diesem Kapitel sollen die Eigenheiten von Kognition, Entscheidungsfindung und Gehirnfunktion bei Adipositas hervorgehoben werden, die auf tiefgreifende Unterschiede zwischen Personen mit und ohne Adipositas in Gehirnsystemen hinweisen, die die Verhaltenskontrolle steuern. Unterschiede in diesen Hirnsystemen könnten eine mechanistische Erklärung dafür liefern, dass Personen mit Adipositas Schwierigkeiten gegenüber stehen, wenn sie versuchen, ihr Verhalten zu ändern
    corecore