19 research outputs found

    Giant molecular clouds under the influence of the galactic environment

    Get PDF
    The vast majority of star formation in galaxies begins in cold, dense, fractally-structured reservoirs of molecular hydrogen known as giant molecular clouds. The instantaneous properties of these clouds and the time-scales on which they evolve can therefore be built up into models of the empirical properties of galactic-scale star formation, and so can be used to understand this process. In this thesis, we first propose a simple analytic framework to quantify the expected variation in the physical properties and lifetimes of giant molecular clouds in response to changes in their galactic-dynamical environments, finding that they vary within a fundamental parameter space spanned by the orbital angular velocity of the host galaxy, the degree of galactic shearing, the gravitational stability, and the mid-plane hydrostatic pressure. We then explore this parameter space using a set of high-resolution numerical simulations of Milky Way-like galaxies. Due to their high densities and pressures relative to the galactic mid-plane, we find that giant molecular clouds in Milky Way-like galaxies are self-gravitating and decoupled from galactic dynamics, by contrast to their lower-density progenitor clouds of atomic gas, which display systematic, galactic-dynamical variations. Finally, we analyse the full evolutionary history of each simulated cloud population as a function of the cloud spatial scale. Across all Milky Way-like environments, we find that the lifetimes of self-gravitating clouds decrease with their spatial scale below the scale-height of the thin gas disc of the galaxy, and converge to the disc crossing time at its scale-height

    On the scale-height of the molecular gas disc in Milky Way-like galaxies

    Full text link
    We study the relationship between the scale-height of the molecular gas disc and the turbulent velocity dispersion of the molecular interstellar medium within a simulation of a Milky Way-like galaxy in the moving-mesh code Arepo. We find that the vertical distribution of molecular gas can be described by a Gaussian function with a uniform scale-height of ~50 pc. We investigate whether this scale-height is consistent with a state of hydrostatic balance between gravity and turbulent pressure. We find that the hydrostatic prediction using the total turbulent velocity dispersion (as one would measure from kpc-scale observations) gives an over-estimate of the true molecular disc scale-height. The hydrostatic prediction using the velocity dispersion between the centroids of discrete giant molecular clouds (cloud-cloud velocity dispersion) leads to more-accurate estimates. The velocity dispersion internal to molecular clouds is elevated by the locally-enhanced gravitational field. Our results suggest that observations of molecular gas need to reach the scale of individual molecular clouds in order to accurately determine the molecular disc scale-height.Comment: MNRAS accepted, comments welcome. 14 pages, 10 figure

    Clouds of Theseus: long-lived molecular clouds are composed of short-lived H2 molecules

    Full text link
    We use passive gas tracer particles in an Arepo simulation of a dwarf spiral galaxy to relate the Lagrangian evolution of star-forming gas parcels and their H2 molecules to the evolution of their host giant molecular clouds. We find that the median chemical lifetime of H2 is just 4 Myr, independent of the lifetime of its host molecular cloud, which may vary from 1 to 90 Myr, with a substantial portion of all star formation in the galaxy occurring in relatively long-lived clouds. The rapid ejection of gas from around young massive stars by early stellar feedback is responsible for this short H2 survival time, driving down the density of the surrounding gas, so that its H2 molecules are dissociated by the interstellar radiation field. This ejection of gas from the H2-dominated state is balanced by the constant accretion of new gas from the galactic environment, constituting a "competition model" for molecular cloud evolution. Gas ejection occurs at a rate that is proportional to the molecular cloud mass, so that the cloud lifetime is determined by the accretion rate, which may be as high as 4 x 10^4 Msol/Myr in the longest-lived clouds. Our findings therefore resolve the conflict between observations of rapid gas ejection around young massive stars and observations of long-lived molecular clouds in galaxies, that often survive up to several tens of Myr. We show that the fastest-accreting, longest-lived, highest-mass clouds drive supernova clustering on sub-cloud scales, which in turn is a key driver of galactic outflows.Comment: 16 pages, 16 figures. Submitted to MNRAS, comments welcome

    The lifecycle of molecular clouds in nearby star-forming disc galaxies

    Get PDF
    It remains a major challenge to derive a theory of cloud-scale (⁠â‰Č100 pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∌100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10−30Myr⁠, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities ÎŁH2≄8M⊙pc−2⁠, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at ÎŁH2≀8M⊙pc−2 GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75-90 per cent of the cloud lifetime), GMCs disperse within just 1−5Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4-10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H II regions are the fundamental units undergoing these lifecycles, with mean separations of 100−300pc in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles.MC and JMDK gratefully acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through an Emmy Noether Research Group (grant number KR4801/1-1) and the DFG Sachbeihilfe (grant number KR4801/2-1). JMDK, APSH, SMRJ, and DTH gratefully acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907). MC, JMDK, SMRJ, and DTH acknowledge support from the Australia-Germany Joint Research Cooperation Scheme (UA-DAAD, grant number 57387355). APSH, SMRJ, and DTH are fellows of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD). BG gratefully acknowledges the support of the Australian Research Council as the recipient of a Future Fellowship (FT140101202). CNC, AH, and JP acknowledge funding from the Programme National ‘Physique et Chimie du Milieu Interstellaire’ (PCMI) of the Centre national de la recherche scientifique/Institut national des sciences de l’Univers (CNRS/INSU) with the Institut de Chimie/Institut de Physique (INC/INP), co-funded by the Commissariat a l’ ` energie ÂŽ atomique et aux energies alternatives (CEA) and the Centre ÂŽ national d’etudes spatiales (CNES). AH acknowledges support ÂŽ by the Programme National Cosmology et Galaxies (PNCG) of CNRS/INSU with the INP and the Institut national de physique nucleaire et de physique des particules (IN2P3), co-funded by ÂŽ CEA and CNES. PL, ES, CF, DL, and TS acknowledge funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 694343). The work of AKL, JS, and DU is partially supported by the National Science Foundation (NSF) under Grants No. 1615105, 1615109, and 1653300. AKL also acknowledges partial support from the National Aeronautics and Space Administration (NASA) Astrophysics Data Analysis Program (ADAP) grants NNX16AF48G and NNX17AF39G. ER acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number RGPIN-2017-03987. FB acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 726384). GB is supported by the Fondo de Fomento al Desarrollo CientŽıfico y Tecnologico of the Comisi ÂŽ on Nacional de ÂŽ Investigacion Cient ÂŽ Žıfica y Tecnologica (CONICYT/FONDECYT), ÂŽ Programa de Iniciacion, Folio 11150220. SCOG acknowledges ÂŽ support from the DFG via SFB 881 ‘The Milky Way System’ (subprojects B1, B2, and B8) and also via Germany’s Excellence Strategy EXC-2181/1–390900948 (the Heidelberg STRUCTURES Excellence Cluster). KK gratefully acknowledges funding from the DFG in the form of an Emmy Noether Research Group (grant number KR4598/2-1, PI Kreckel). AU acknowledges support from the Spanish funding grants AYA2016-79006-P (MINECO/FEDER) and PGC2018-094671-B-I00 (MCIU/AEI/FEDER)

    The lifecycle of molecular clouds in nearby star-forming disc galaxies

    Get PDF
    It remains a major challenge to derive a theory of cloud-scale (⁠â‰Č100 pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∌100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically 10−30 Myr⁠, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities ÎŁ_(H₂) ≄ 8 M_⊙ pc⁻ÂČ⁠, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at ÎŁ_(H₂) ≀ 8 M_⊙ pc⁻ÂČ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just 1−5 Myr once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H II regions are the fundamental units undergoing these lifecycles, with mean separations of 100−300 pc in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles

    WISDOM project XX. - Strong shear tearing molecular clouds apart in NGC 524

    Get PDF
    Early-type galaxies (ETGs) are known to harbour dense spheroids of stars but scarce star formation (SF). Approximately a quarter of these galaxies have rich molecular gas reservoirs yet do not form stars efficiently. We study here the ETG NGC 524, with strong shear suspected to result in a smooth molecular gas disc and low star-formation efficiency (SFE). We present new spatially resolved observations of the 12CO(2-1)-emitting cold molecular gas from the Atacama Large Millimeter/sub-millimeter Array (ALMA) and of the warm ionized-gas emission lines from SITELLE at the Canada–France–Hawaii Telescope. Although constrained by the resolution of the ALMA observations (≈37 pc), we identify only 52 GMCs with radii ranging from 30 to 140 pc, a low mean molecular gas mass surface density âŒ©ÎŁgasâŒȘ ≈ 125 M⊙ pc−2 and a high mean virial parameter 〈αobs, virâŒȘ ≈ 5.3. We measure spatially resolved molecular gas depletion times (τdep ≡ 1/SFE) with a spatial resolution of ≈100 pc within a galactocentric distance of 1.5 kpc. The global depletion time is ≈2.0 Gyr but τdep increases towards the galaxy centre, with a maximum τdep, max ≈ 5.2 Gyr. However, no pure H II region is identified in NGC 524 using ionized-gas emission-line ratio diagnostics, so the τdep inferred are in fact lower limits. Measuring the GMC properties and dynamical states, we conclude that shear is the dominant mechanism shaping the molecular gas properties and regulating SF in NGC 524. This is supported by analogous analyses of the GMCs in a simulated ETG similar to NGC 524
    corecore