3 research outputs found

    Cognitive reserve proxies do not differentially account for cognitive performance in patients with focal frontal and non-frontal lesions

    Get PDF
    Objective: Cognitive reserve (CR) suggests that premorbid efficacy, aptitude, and flexibility of cognitive processing can aid the brain\u2019s ability to cope with change or damage. Our previous work has shown that age and literacy attainment predict the cognitive performance of frontal patients on frontal-executive tests. However, it remains unknown whether CR also predicts the cognitive performance of non-frontal patients. Method: We investigated the independent effect of a CR proxy, National Adult Reading Test (NART) IQ, as well as age and lesion group (frontal vs. non-frontal) on measures of executive function, intelligence, processing speed, and naming in 166 patients with focal, unilateral frontal lesions; 91 patients with focal, unilateral non-frontal lesions; and 136 healthy controls. Results: Fitting multiple linear regression models for each cognitive measure revealed that NART IQ predicted executive, intelligence, and naming performance. Age also significantly predicted performance on the executive and processing speed tests. Finally, belonging to the frontal group predicted executive and naming performance, while membership of the non-frontal group predicted intelligence. Conclusions: These findings suggest that age, lesion group, and literacy attainment play independent roles in predicting cognitive performance following stroke or brain tumour. However, the relationship between CR and focal brain damage does not differ in the context of frontal and non-frontal lesions

    Cognitive estimation:Performance of patients with focal frontal and posterior lesions

    Get PDF
    The Cognitive Estimation Test (CET) is a widely used test to investigate estimation abilities requiring complex processes such as reasoning, the development and application of appropriate strategies, response plausibility checking as well as general knowledge and numeracy (e.g., Shallice and Evans, 1978; MacPherson et al., 2014). Thus far, it remains unknown whether the CET is both sensitive and specific to frontal lobe dysfunction. Neuroimaging techniques may not represent a useful methodology for answering this question since the complex processes involved are likely to be associated with a large network of brain regions, some of which are not functionally necessary to successfully carry out the CET. Instead, neuropsychological studies may represent a more promising investigation tool for identifying the brain areas necessary for CET performance. We recently developed two new versions of the CET (CET-A and CET-B; MacPherson et al., 2014). We investigated the overall performance and conducted an error analysis on CET-A in patients with focal, unilateral, frontal (n= 38) or posterior (n= 22) lesions and healthy controls (n=39). We found that frontal patients' performance was impaired compared to healthy controls on CET demonstrating that our CET-A is affected by frontal lobe damage. We also found that frontal patients generated significantly poorer estimates than posterior patients on CET-A. This could not be explained by impairments in fluid intelligence. The error analyses suggested that for CET-A, extreme and very extreme responses are impaired following frontal lobe damage. However, only very extreme responses are significantly more impaired following frontal lobe than posterior damage and so represent a measure restricted to frontal "executive" impairment, in addition to overall CET performance
    corecore