9 research outputs found

    The Cortisol Awakening Response (CAR) in 2-to 4-year-old Children: Effects of Acute Nighttime Sleep Restriction, Wake Time, and Daytime Napping

    Get PDF
    The cortisol awakening response (CAR) is presumed critically important for healthy adaptation. The current literature, however, is hampered by systematic measurement difficulties relative to awakening, especially with young children. While reports suggest the CAR is smaller in children than adults, well-controlled research in early childhood is scarce. We examined whether robust CARs exist in 2- to 4-year-old children and if sleep restriction, wake timing, and napping influence the CAR (n?=?7). During a 25-day in-home protocol, researchers collected four salivary cortisol samples (0, 15, 30, 45?min post-wake) following five polysomnographic sleep recordings on nonconsecutive days after 4?hr (morning nap), 7?hr (afternoon nap), 10?hr (evening nap), 13?hr (baseline night), and 16?hr (sleep restriction night) of wakefulness (20 samples/child). The CAR was robust after nighttime sleep, diminished after sleep restriction, and smaller but distinct after morning and afternoon (not evening) naps. Cortisol remained elevated 45?min after morning and afternoon naps. (c) 2011 Wiley Periodicals, Inc. Dev Psychobiol 54:412422, 2012

    The CIRCORT database: Reference ranges and seasonal changes in diurnal salivary cortisol derived from a meta-dataset comprised of 15 field studies

    Get PDF
    Diurnal salivary cortisol profiles are valuable indicators of adrenocortical functioning in epidemiological research and clinical practice. However, normative reference values derived from a large number of participants and across a wide age range are still missing. To fill this gap, data were compiled from 15 independently conducted field studies with a total of 104,623 salivary cortisol samples obtained from 18,698 unselected individuals (mean age: 48.3 years, age range: 0.5–98.5 years, 39% females). Besides providing a descriptive analysis of the complete dataset, we also performed mixed-effects growth curve modeling of diurnal salivary cortisol (i.e., 1–16 h after awakening). Cortisol decreased significantly across the day and was influenced by both, age and sex. Intriguingly, we also found a pronounced impact of sampling season with elevated diurnal cortisol in spring and decreased levels in autumn. However, the majority of variance was accounted for by between-participant and between-study variance components. Based on these analyses, reference ranges (LC/MS–MS calibrated) for cortisol concentrations in saliva were derived for different times across the day, with more specific reference ranges generated for males and females in different age categories. This integrative summary provides important reference values on salivary cortisol to aid basic scientists and clinicians in interpreting deviations from the normal diurnal cycle
    corecore