45 research outputs found

    Pluralism, Community and Civil Society at Regional Level : An Analysis from a Viewpoint of Historical Research

    Get PDF
    textabstractOBJECTIVE. The purpose of this article is to present and discuss the susceptibilityweighted imaging signal characteristics of the normal pediatric brain and those of a variety of pediatric brain pathologic abnormalities. CONCLUSION. Its high susceptibility for blood products, iron depositions, and calcifications makes susceptibility-weighted imaging an important additional sequence for the diagnostic workup of pediatric brain pathologic abnormalities. Compared with conventional MRI sequences, susceptibility-weighted imaging may show lesions in better detail or with higher sensitivity. Familiarity with the pediatric susceptibility-weighted imaging signal variance is essential to prevent misdiagnosis

    Gymnosperms on the EDGE

    Get PDF
    Driven by limited resources and a sense of urgency, the prioritization of species for conservation has been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The effect of different extinction probability transformations and the handling of IUCN data deficient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g. Araucaria araucana). These results highlight the necessity of using approaches that integrate evolutionary information in conservation science

    Focal hemodynamic patterns of status epilepticus detected by susceptibility weighted imaging (SWI)

    Get PDF
    Objective: To investigate pathological findings in the susceptibility weighted imaging (SWI) of patients experiencing convulsive (CSE) or non-convulsive status epilepticus (NCSE) with focal hyperperfusion in the acute setting. Methods: Twelve patients (six with NCSE confirmed by electroencephalogram (EEG) and six patients with CSE with seizure event clinically diagnosed) underwent MRI in this acute setting (mean time between onset of symptoms and MRI was 3h 8min), including SWI, dynamic susceptibility contrast MR imaging (DSC) and diffusion-weighted imaging (DWI). MRI sequences were retrospectively evaluated and compared with EEG findings (10/12 patients), and clinical symptoms. Results: Twelve out of 12 (100%) patients showed a focal parenchymal area with pseudo-narrowed cortical veins on SWI, associated with focal hyperperfused areas (increased cerebral blood flow (CBF) and mean transit time (MTT) shortening), and cortical DWI restriction in 6/12 patients (50%). Additionally, these areas were associated with ictal or postical EEG patterns in 8/10 patients (80%). Most frequent acute clinical findings were aphasia and/or hemiparesis in eight patients, and all of them showed pseudo-narrowed veins in those parenchymal areas responsible for these symptoms. Conclusion: In this study series with CSE and NCSE patients, SWI showed focally pseudo-narrowed cortical veins in hyperperfused and ictal parenchymal areas. Therefore, SWI might have the potential to identify an ictal region in CSE/NCSE. Key Points : • The focal ictal brain regions show hyperperfusion in DSC MR-perfusion imaging. • SWI shows focally diminished cortical veins in hyperperfused ictal regions. • SWI has the potential to identify a focal ictal region in CSE/NCSE

    Diagnostic Yield and Treatment Impact of Targeted Exome Sequencing in Early-Onset Epilepsy

    Get PDF
    Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged 8,344perpatientintheRetrospectivegroup,suggestingsavingsof8,344 per patient in the Retrospective group, suggesting savings of 5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important

    Contrasting Biogeographic and Diversification Patterns in Two Mediterranean-Type Ecosystems

    Get PDF
    The five Mediterranean regions of the world comprise almost 50,000 plant species (ca 20% of the known vascular plants) despite accounting for less than 5% of the world’s land surface. The ecology and evolutionary history of two of these regions, the Cape Floristic Region and the Mediterranean Basin, have been extensively investigated, but there have been few studies aimed at understanding the historical relationships between them. Here, we examine the biogeographic and diversification processes that shaped the evolution of plant diversity in the Cape and the Mediterranean Basin using a large plastid data set for the geophyte family Hyacinthaceae (comprising ca. 25% of the total diversity of the group), a group found mainly throughout Africa and Eurasia. Hyacinthaceae is a predominant group in the Cape and the Mediterranean Basin both in terms of number of species and their morphological and ecological variability. Using state-of-the-art methods in biogeography and diversification, we found that the Old World members of the family originated in sub-Saharan Africa at the Paleocene–Eocene boundary and that the two Mediterranean regions both have high diversification rates, but contrasting biogeographic histories. While the Cape diversity has been greatly influenced by its relationship with sub-Saharan Africa throughout the history of the family, the Mediterranean Basin had no connection with the latter after the onset of the Mediterranean climate in the region and the aridification of the Sahara. The Mediterranean Basin subsequently contributed significantly to the diversity of neighbouring areas, especially Northern Europe and the Middle East, whereas the Cape can be seen as a biogeographical cul-de-sac, with only a few dispersals toward sub-Saharan Africa. The understanding of the evolutionary history of these two important repositories of biodiversity would benefit from the application of the framework developed here to other groups of plants present in the two regions

    Exome analysis focusing on epilepsy-related genes in children and adults with sudden unexplained death

    Get PDF
    Purpose: Genetic studies in sudden infant death syndrome (SIDS) and sudden unexplained death (SUD) cohorts have indicated that cardiovascular diseases might have contributed to sudden unexpected death in 20–35 % of autopsy-negative cases. Sudden unexpected death can also occur in people with epilepsy, termed as sudden unexpected death in epilepsy (SUDEP). The pathophysiological mechanisms of SUDEP are not well understood, but are likely multifactorial, including seizure-induced hypoventilation and arrhythmias as well as genetic risk factors. The sudden death of some of the SIDS/SUD victims might also be explained by genetic epilepsy, therefore this study aimed to expand the post-mortem genetic analysis of SIDS/SUD cases to epilepsy-related genes. Methods: Existing whole-exome sequencing data from our 155 SIDS and 45 SUD cases were analyzed, with a focus on 365 epilepsy-related genes. Nine of the SUD victims had a known medical history of epilepsy, seizures or other underlying neurological conditions and were therefore classified as SUDEP cases. Results: In our SIDS and SUD cohorts, we found epilepsy-related pathogenic/likely pathogenic variants in the genes OPA1, RAI1, SCN3A, SCN5A and TSC2. Conclusion: Post-mortem analysis of epilepsy-related genes identified potentially disease-causing variants that might have contributed to the sudden death events in our SIDS/SUD cases. However, the interpretation of identified variants remains challenging and often changes over time as more data is gathered. Overall, this study contributes insight in potentially pathophysiological epilepsy-related mechanisms in SIDS, SUD and SUDEP victims and underlines the importance of sensible counselling on the risk and preventive measures in genetic epilepsy

    Negative affect states and cardiovascular disorders: a review and the proposal of a unifying biopsychosocial concept

    Full text link
    AIM The purpose of this review was to study the relationships between negative affect states and cardiovascular disorders. PROCEDURE The phenomenology of the negative affect states of depression, helplessness, hopelessness, vital exhaustion and grief is described. Their correlations with morbidity and mortality are analyzed. The physiological correlates of the affect states are pointed out. Finally, the reaction pattern of conservation-withdrawal according to Schmale and Engel and its ontogenesis are outlined. This is a disengaging behavior pattern as opposed to the engaging fight-flight reaction pattern of Cannon. The giving up complex, with its affects of helplessness and hopelessness, is explained. CONCLUSIONS The giving up complex in the context of the conservation-withdrawal pattern presents a biologically and developmentally sound conceptual basis for the understanding of the relationships of the negative affect states with cardiovascular disorders. This enables the integration of the concept of vital exhaustion, which has become the most promising operationalized instrument in psychosocial cardiovascular research

    allgenes_allH_outg

    No full text
    Sequence Alignments for Horismenus spp

    Data from: Uncovering cryptic parasitoid diversity in Horismenus (Chalcidoidea, Eulophidae)

    No full text
    Horismenus parasitoids are an abundant and understudied group of eulophid wasps found mainly in the New World. Recent surveys based on morphological analyses in Costa Rica have quadrupled the number of named taxa, with more than 400 species described so far. This recent revision suggests that there is still a vast number of unknown species to be identified. As Horismenus wasps have been widely described as parasitoids of insect pests associated with crop plants, it is of high importance to properly establish the extant diversity of the genus, in order to provide biological control practitioners with an exhaustive catalog of putative control agents. In this study, we first collected Horismenus wasps from wild Phaseolus bean seeds in Central Mexico and Arizona to assess the genetic relatedness of three morphologically distinct species with overlapping host and geographical ranges. Sequence data from two nuclear and two mitochondrial gene regions uncovered three cryptic species within each of the three focal species (i.e., H. missouriensis, H. depressus and H. butcheri). The monophyly of each cryptic group is statistically supported (except in two of them represented by one single tip in which monophyly cannot be tested). The phylogenetic reconstruction is discussed with respect to differences between gene regions as well as likely reasons for the differences in variability between species
    corecore