135 research outputs found

    Non-invasive prediction of bone mechanical properties of the mouse tibia in longitudinal preclinical studies

    Get PDF
    The mouse tibia is a common site to investigate bone remodelling and the effect of treatments preclinically. It can be monitored using in vivo micro-Computed Tomography (microCT) imaging in order to track longitudinal changes in its morphometric and densitometric properties. Additionally, microCT images can be converted into micro-Finite Element (microFE) models for the non-invasive estimation of mechanical properties. Therefore, the combination of in vivo imaging and microFE modelling can provide comprehensive analyses about bone changes over space and time. However, repeated ionizing radiation exposure can have a significant effect on the bone properties; also, microFE models need to be validated against experimental measurements before application. The aim of this PhD project was to provide the best practice for the definition and validation of the in vivo microCT scanning procedure for the mouse tibia in preclinical studies. First, different scanning protocols have been tested by quantifying the accuracy of the image-based measurements against high resolution scans. One of the procedures has been selected as the best compromise between measurement accuracy and nominal radiation dose. Afterwards, microFE predictions of local and structural mechanical properties obtained using the selected scanning protocol have been validated. The experimental data for the validation has been obtained using the Digital Volume Correlation (DVC) approach, the only method which can provide volumetric measurements of local displacements under loading. Good to excellent correlations between the measured and predicted displacements were found. Errors in predictions of structural properties were in the order of 10-15%. Lastly, the protocol has been tested in vivo. The right tibia of 24 mice has been scanned in vivo five times, while the left tibia has been used as non-irradiated control. Non-significant or minimal radiation effects were found on the morphometric, densitometric and mechanical properties of the tibia. In conclusion, a scanning procedure for longitudinal in vivo microCT imaging of the whole mouse tibia has been defined and validated. The protocol will be used in future studies for investigating the effect of bone interventions

    Not Just Arterial Damage: Increased Incidence of Venous Thromboembolic Events in Cardiovascular Patients With Elevated Plasma Levels of Apolipoprotein CIII

    Get PDF
    Background Apolipoprotein CIII (apo CIII ) is a crucial player in triglyceride-rich lipoprotein metabolism, but may also act pleiotropically, provoking inflammatory responses and stimulating coagulation. Elevated apo CIII plasma levels have been associated with increased activity of coagulation factors. Since these features of prothrombotic diathesis are linked with venous thromboembolism ( VTE ), we hypothesized that apo CIII plays a role in VTE . Methods and Results We recorded nonfatal VTE events in 1020 patients (age 63.3\ub111.4 years; 29.1% women) with or without coronary artery disease (79.1% with coronary artery disease and 20.9% without coronary artery disease) during a long follow-up. Complete plasma lipid and apolipoproteins were available for all patients. Forty-five patients (4.4%) experienced nonfatal VTE events during a median follow-up period of 144 months. Apo CIII plasma concentration at enrollment was higher in patients with VTE compared with patients without VTE (12.2 [95% CI, 11.10-13.5] mg/dL vs 10.6 [95% CI, 10.4-10.9] mg/dL, respectively; P=0.011). Patients with apo CIII levels above the median value (10.6 mg/dL) exhibited an increased risk of VTE (incidence rate, 6.0 [95% CI , 4.0-8.0] vs 1.8 [95% CI, 0.7-2.9] VTE events/1000 person-years; unadjusted hazard ratio [ HR ], 3.42 [95% CI , 1.73-6.75]; P<0.001). This association was confirmed after adjustment for sex, age, coronary artery disease diagnosis, body mass index, hypertension, and anticoagulant treatment at enrollment ( HR , 2.66; 95% CI , 1.31-5.37 [ P=0.007]), with inclusion of lipid parameters in the Cox model (HR, 3.74; 95% CI , 1.24-11.33 [ P=0.019]), and even with exclusion of patients who died at follow-up ( HR, 3.92; 95% CI , 1.68-9.14 [ P=0.002]) or patients taking anticoagulants ( HR , 3.39; 95% CI , 1.72-6.69 [ P<0.001]). Conclusions Our results suggest that high plasma apo CIII concentrations may predict an increased risk of VTE in patients with cardiovascular disease

    MicroRNAs-143 and -145 induce epithelial to mesenchymal transition and modulate the expression of junction proteins

    Get PDF
    Transforming growth factor (TGF)-β is one of the major inducers of epithelial to mesenchymal transition (EMT), a crucial program that has a critical role in promoting carcinoma’s metastasis formation. MicroRNAs-143 and -145, which are both TGF-β direct transcriptional targets, are essential for the differentiation of vascular smooth muscle cells (VSMC) during embryogenesis, a TGF-β-dependent process reminiscent of EMT. Their role in adult tissues is however less well defined and even ambiguous, as their expression was correlated both positively and negatively with tumor progression. Here we show that high expression of both miRs-143 and -145 in mouse mammary tumor cells expressing constitutively active STAT3 (S3C) is involved in mediating their disrupted cell–cell junctions. Additionally, miR-143 appears to have a unique role in tumorigenesis by enhancing cell migration in vitro and extravasation in vivo while impairing anchorage-independent growth, which may explain the contradictory reports about its role in tumors. Accordingly, we demonstrate that overexpression of either miRNA in the non-transformed mammary epithelial NMuMG cells leads to upregulation of EMT markers and of several endogenous TGF-β targets, downmodulation of a number of junction proteins and increased motility, correlating with enhanced basal and TGF-β-induced SMAD-mediated transcription. Moreover, pervasive transcriptome perturbation consistent with the described phenotype was observed. In particular, the expression of several transcription factors involved in the mitogenic responses, of MAPK family members and, importantly, of several tight junction proteins and the SMAD co-repressor TGIF was significantly reduced. Our results provide important mechanistic insight into the non-redundant role of miRs-143 and -145 in EMT-related processes in both transformed and non-transformed cells, and suggest that their expression must be finely coordinated to warrant optimal migration/invasion while not interfering with cell growth

    ZnO Tetrapods for Label-Free Optical Biosensing: Physicochemical Characterization and Functionalization Strategies

    Get PDF
    In this study, we fabricated three different ZnO tetrapodal nanostructures (ZnO-Ts) by a combustion process and studied their physicochemical properties by different techniques to evaluate their potentiality for label-free biosensing purposes. Then, we explored the chemical reactivity of ZnO-Ts by quantifying the available functional hydroxyl groups (–OH) on the transducer surface necessary for biosensor development. The best ZnO-T sample was chemically modified and bioconjugated with biotin as a model bioprobe by a multi-step procedure based on silanization and carbodiimide chemistry. The results demonstrated that the ZnO-Ts could be easily and efficiently biomodified, and sensing experiments based on the streptavidin target detection confirmed these structures’ suitability for biosensing applications

    One-carbon genetic variants and the role of MTHFD1 1958G>A in liver and colon cancer risk according to global DNA methylation

    Get PDF
    Several polymorphic gene variants within one-carbon metabolism, an essential pathway for nucleotide synthesis and methylation reactions, are related to cancer risk. An aberrant DNA methylation is a common feature in cancer but whether the link between one-carbon metabolism variants and cancer occurs through an altered DNA methylation is yet unclear. Aims of the study were to evaluate the frequency of one-carbon metabolism gene variants in hepatocellular-carcinoma, cholangiocarcinoma and colon cancer, and their relationship to cancer risk together with global DNA methylation status. Genotyping for BHMT 716A>G, DHFR 19bp ins/del, MTHFD1 1958G>A, MTHFR 677C>T, MTR 2756A>G, MTRR 66A>G, RFC1 80G>A, SHMT1 1420C>T, TCII 776C>G and TS 2rpt-3rpt was performed in 102 cancer patients and 363 cancer-free subjects. Methylcytosine (mCyt) content was measured by LC/MS/MS in peripheral blood mononuclear cells (PBMCs) DNA. The MTHFD1 1958AA genotype was significantly less frequent among cancer patients as compared to controls (p = 0.007) and related to 63% reduction of overall cancer risk (p = 0.003) and 75% of colon cancer risk (p = 0.006). When considering PBMCs mCyt content, carriers of the MTHFD1 1958GG genotype showed a lower DNA methylation as compared to carriers of the A allele (p = 0.048). No differences were highlighted by evaluating a possible relationship between the other polymorphisms analyzed with cancer risk and DNA methylation. The MTHFD1 1958AA genotype is linked to a significantly reduced cancer risk. The 1958GG genotype is associated to PBMCs DNA hypomethylation as compared to the A allele carriership that may exert a protective effect for cancer risk by preserving from DNA hypomethylation

    Sleep habits and pattern in 1-14 years old children and relationship with video devices use and evening and night child activities

    Get PDF
    Background: Sleep in childhood and adolescence is crucial for mental and physical health; however several researches reported an increasing trend towards a sleep deprivation in this age. Due to the lack of recent epidemiological studies in Italy, the aim of our study was to depict sleep habits and patterns in Italian children aged 1-14 years and to evaluate their relationships with video devices use (TV, tablet, smartphone, PC) and evening/night child activities. Methods: A structured interview was conducted during 2015 by 72 Family Pediatricians in 2030 healthy children aged 1-14 years by a cross-sectional survey named "Ci piace sognare". Total sleep duration was calculated, 2015 National Sleep Foundation Recommendations were used as reference. Optimal sleepers were defined children sleeping in own bed all night without awakenings. Multivariable median regression was performed to identify predictors of sleep duration and multivariable logistic regression for predictors of optimal sleep. Results: Total sleep duration and numbers of awakenings decreased with age. Only 66.9% of children had sleep duration in agreement with Recommendations (50% in 10-14 years group). Before sleeping 63.5% of children used video devices (39.6% at 1-3 years), 39.1% read, 27.5% drank and 19.5% ate. Bottle users at bedtime were 30.8% at 1-3 years, 16.6% at 3-5 years and 4.9% at 5-7 years. Overall, 23.4% of children changed sleeping place during the night, 22.4% referred sleeping problems in the first year of life. Video devices use was negative predictor of sleep duration (-0.25 h [95% CI:-0.35,-0.14], p < 0.001). Optimal sleep was inversely related with bedroom TV (OR 0.63 [0.50,0.79], p < 0.001), with sleeping disorders in the first year (OR 0.62 [0.48,0.80], p < 0.001)), with bottle use (OR 0.64 [0.44,0.94], p < 0.05) and posivively related with high mother's education level (OR 1.44 [1.11,1.88], p < 0.01). Conclusions: About one third of 1 to 14 year Italian children sleep less than recommended, one half in teenage. Modifiable risk factors for sleep abnormalities such as video devices use, bedroom TV and bottle use should be target of preventive strategies for a correct sleep. Pediatricians should give priority to the identification of sleep disorders early in life

    Yeast-extracted nucleotides and nucleic acids as promising feed additives for European sea bass (Dicentrarchus labrax) juveniles

    Get PDF
    Nowadays functional ingredients have a significant potential for improving current low fish meal (FM) aquafeed formulation in sustaining growth and enhancing animal robustness for Mediterranean aquaculture. Among them, nucleotides (NT) and nucleic acids (NA) drew attention for their application in the last two decades. NT are organic molecules involved in many life-supporting pathways, and are the building blocks of NA, which stand as genetic repositories. NT are naturally present in organic ingredients, and among them FM is known to be one of the highest NT sources. When this NT source is seriously limited, fish might be under the minimum NT requirements, especially in fast growing life stages of carnivorous species. Hence, a trial on European sea bass juveniles was carried out, testing two dietary FM levels (FM10, FM20 as 10% and 20% FM, respectively) supplemented with 500 mg kg-1 yeast-originate NT or NA dose over 80 days. Thereafter, fish were exposed to one week of sub-optimal thermal and dissolved oxygen condition (30°C and 4.0 mg/L O2) to further explore the effect of NT and NA inclusion on immune response and gut microbiome alteration. At the end of the growth period NT increased feed intake at both FM dietary levels. FM20 combined with NA and NT further improved growth performance, enhancing lipid efficiency and increased anti-inflammatory TGF-b. After sub-optimal environmental conditions both NT and NA exerted prebiotic functions on gut microbiome by promoting beneficial lactic acid bacteria such as Weissella and Leuconostoc. At the same time NT in 10% FM diet increased the abundance of Bacillus taxon. In conclusion, the combination of NT/NA included at 500 mg kg-1 was able to promote growth when included in 20% FM level, assuming higher nutritional NT requirement when combined with 10% FM. On the other hand, NT/NA added in 10% FM upregulate proinflammatory IL-1b and favor beneficial gut bacterial taxa

    Exercise and bone health in cancer: enemy or ally?

    Get PDF
    Simple Summary Patients with cancer may face bone metastases and osteoporosis due to cancer or treatments, leading to a high risk of developing skeletal-related events. Skeletal-related events may negatively affect patients' quality and length of life. Although physical exercise has been recognized as a potential adjunctive strategy in the cancer setting, it is often not recommended to patients with bone health impairments due to safety concerns. In the present review, we explore the effects of exercise on safety profile, bone health, and the impact on functional outcomes in patients with cancer affected by bone metastasis, osteoporosis/osteopenia, or at high risk of losing bone. Moreover, the underlying mechanisms of the beneficial effect of exercise on bone are explored, and considerations about exercise prescription are discussed. Bone health is often threatened in cancer patients. Bone metastasis and osteoporosis frequently occur in patients with cancer and may lead to different skeletal-related events, which may negatively affect patients' quality of life and are associated with high mortality risk. Physical exercise has been recognized as a potential adjunctive strategy in the cancer setting to improve physical function as well as treatment-related side effects. Nevertheless, exercise is often not recommended to patients with bone health impairments due to safety concerns. In the current review, we aimed, through a comprehensive review of the evidence, to explore the impact of exercise in terms of safety profile, bone outcomes, and the effects on other outcomes in patients with cancer affected by bone metastasis or at high risk of losing bone. Additionally, we explored the potential mechanisms by which exercise may act on bone, particularly the impact of mechanical load on bone remodeling. Finally, considerations about exercise prescription and programming in these populations are also discussed

    SNAI1 is upregulated during muscle regeneration and represses FGF21 and ATF3 expression by directly binding their promoters

    Get PDF
    During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts
    • …
    corecore