168 research outputs found

    Individualisiertes Coaching zur Bewegungsförderung inaktiver Erwachsener: Analyse von Interventionsadhärenz und Dropout während einer sechsmonatigen Kontrollstudie

    Get PDF
    Hintergrund: Mit individualisierten Bewegungsförderungsprogrammen (Noar et al., 2007), Verhaltensänderungstechniken (Michie et al., 2009) und persönlichem Coaching (Foster et al., 2013) könnte der Zunahme von chronischen Krankheiten (Ekelund, 2012) entgegengewirkt und die Anzahl der weltweit 31.1% körperlich inaktiven Menschen gesenkt werden (WHO, 2010). In der vorliegenden Arbeit wird eine sechsmonatige, randomisierte Kontrollstudie mit drei unterschiedlichen Coaching-Methoden bezüglich der objektiv gemessenen Interventionsadhärenz und Dropouts untersucht. Methode: 167 inaktive gesunde Erwachsene (M=43.4) wurden den Gruppen A (einmalige schriftliche Empfehlung), B (12 Telefon-Coachings) und C (12 Telefon-Coachings & SMS) randomisiert zugeteilt. Die subjektive Aktivitätssteigerung (Prä- und Posttest) wurde mithilfe des SIMAQ-Fragebogens gemessen. Die objektiv gemessene Interventionsadhärenz wurde anhand der Anzahl Aktionen auf der für alle Probanden zugänglichen interaktiven Homepage untersucht und zusätzlich die Interventionsvollständigkeit ausgewertet. Ergebnisse: Insgesamt verzeichneten die Gruppen B und C nach der sechsmonatigen Interventionsstudie im Vergleich zur Gruppe A eine signifikant höhere Steigerung der selbstberichteten körperlichen Aktivität, signifikant mehr Aktionen auf der Homepage und signifikant weniger Dropout-Fälle. Die Aktionen auf der Homepage moderierten den Zusammenhang der Gruppenzuteilung und der Steigerung der körperlichen Aktivität nicht. Auch wurde kein positiver Zusammenhang zwischen den Aktionen auf der Homepage und der Steigerung der körperlichen Aktivität nachgewiesen. In keiner der Untersuchungen konnte der Mehrwert der zusätzlichen SMS im Vergleich zu alleinigem Telefon-Coaching bestätigt werden. Diskussion: Die Auswertungen zeigten, dass das telefonbasierte Coaching-Programm „Movingcall“ bisher sehr erfolgreich war und zur Aktivitätssteigerung inaktiver Erwachsener eingesetzt werden könnte

    Quantifying activities of daily living impairment in Parkinson’s disease using the Functional Activities Questionnaire

    Get PDF
    Objective Cognitive-driven activity of daily living (ADL) impairment in Parkinson’s disease (PD) is increasingly discussed as prodromal marker for dementia. Diagnostic properties of assessments for this specifc ADL impairment are sparsely investigated in PD. The ability of the Functional Activities Questionnaire (FAQ) for diferentiating between PD patients with normal cognition and with mild cognitive impairment (PD-MCI), according to informant and self-reports, was examined. Global cognitive function in groups with and without mild ADL impairment was compared according to diferent cut-ofs. Methods Multicenter data of 589 patients of an international cohort (CENTRE-PD) were analyzed. Analyses were run separately for informant-rated and self-rated FAQ. Receiver operating characteristic (ROC) analysis was conducted to defne the optimal FAQ cut-of for PD-MCI (≥1), and groups were additionally split according to reported FAQ cut-ofs for PD-MCI in the literature (≥3,≥5). Binary logistic regressions examined the efect of the Montreal Cognitive Assessment (MoCA) score in PD patients with and without mild ADL impairment. Results Two hundred and twenty-fve (38.2%) patients were classifed as PD-MCI. For all three cut-of values, sensitivity was moderate to low (0.54) with a tendency of higher values for self-reported defcits. For the self-report, the cut-of≥3 showed a signifcant efect of the MoCA (B= −0.31, p=0.003), where FAQ≥3 patients had worse cognition. No efect for group diferences based on informant ratings was detected. Conclusion Our data argue that self-reported ADL impairments assessed by the FAQ show a relation to the severity of cognitive impairment in PD

    Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea

    Get PDF
    The Black Sea is the world’s largest anoxic basin and a model system for studying processes across redox gradients. In between the oxic surface and the deeper sulfidic waters there is an unusually broad layer of 10–40 m, where neither oxygen nor sulfide are detectable. In this suboxic zone, dissolved phosphate profiles display a pronounced minimum at the upper and a maximum at the lower boundary, with a peak of particulate phosphorus in between, which was suggested to be caused by the sorption of phosphate on sinking particles of metal oxides. Here we show that bacterial polyphosphate inclusions within large magnetotactic bacteria related to the genus Magnetococcus contribute substantially to the observed phosphorus peak, as they contain 26–34% phosphorus compared to only 1–5% in metal-rich particles. Furthermore, we found increased gene expression for polyphosphate kinases by several groups of bacteria including Magnetococcaceae at the phosphate maximum, indicating active bacterial polyphosphate degradation. We propose that large magnetotactic bacteria shuttle up and down within the suboxic zone, scavenging phosphate at the upper and releasing it at the lower boundary. In contrast to a passive transport via metal oxides, this bacterial transport can quantitatively explain the observed phosphate profiles.We are grateful for the competent technical assistance of Ronny Baaske, Christian Burmeister, Christin Laudan and Christian Meeske. We are greatly indebted to Cindy Lee and Bo Barker Jørgensen for providing extremely helpful comments on an earlier version of the manuscript. Horst D. Schulz and René Friedland are acknowledged for stimulating discussions on the modeling approach. We thank the captain and the crew of the R/V “Maria S. Merian” for the excellent support on board and the DFG (MSM33) and BMBF (01DK12043) for financing the cruise. The particle analysis was funded by the BMBF (03F0663A). S.B. was funded by a BONUS BLUEPRINT project (03F0679A awarded to KJ; http://blueprint- project.org), supported by BONUS (Art 185), funded jointly by the EU and the German Federal Ministry of Education and Research (BMBF). T. S. was funded by the German research foundation (DFG) (awarded to K.J., JU 367/16-1). Metagenome sequencing was done at the Swedish National Genomics Infrastructure (NGI) at SciLifeLab (Sweden).We are grateful for the competent technical assistance of Ronny Baaske, Christian Burmeister, Christin Laudan and Christian Meeske. We are greatly indebted to Cindy Lee and Bo Barker Jørgensen for providing extremely helpful comments on an earlier version of the manuscript. Horst D. Schulz and René Friedland are acknowledged for stimulating discussions on the modeling approach. We thank the captain and the crew of the R/V “Maria S. Merian” for the excellent support on board and the DFG (MSM33) and BMBF (01DK12043) for financing the cruise. The particle analysis was funded by the BMBF (03F0663A). S.B. was funded by a BONUS BLUEPRINT project (03F0679A awarded to KJ; http://blueprint- project.org), supported by BONUS (Art 185), funded jointly by the EU and the German Federal Ministry of Education and Research (BMBF). T. S. was funded by the German research foundation (DFG) (awarded to K.J., JU 367/16-1). Metagenome sequencing was done at the Swedish National Genomics Infrastructure (NGI) at SciLifeLab (Sweden)

    Silac mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function

    Get PDF
    Stable isotope labeling by amino acids in cell culture (SILAC) has become a versatile tool for quantitative, mass spectrometry (MS)-based proteomics. Here, we completely label mice with a diet containing either the natural or the 13C6-substituted version of lysine. Mice were labeled over four generations with the heavy diet, and development, growth, and behavior were not affected. MS analysis of incorporation levels allowed for the determination of incorporation rates of proteins from blood cells and organs. The F2 generation was completely labeled in all organs tested. SILAC analysis from various organs lacking expression of β1 integrin, β-Parvin, or the integrin tail-binding protein Kindlin-3 confirmed their absence and disclosed a structural defect of the red blood cell membrane skeleton in Kindlin-3-deficient erythrocytes. The SILAC-mouse approach is a versatile tool by which to quantitatively compare proteomes from knockout mice and thereby determine protein functions under complex in vivo conditions

    Multiomic studies to improve fruit quality of berry fruits

    Get PDF
    In this study we are going to use different omic-techniques to analyze fruits of three species of berries such as strawberry, raspberry and black currant. Berry fruit are well appreciated for their delicate flavor and nutraceutical properties, with consumer demand increasing over the last years. Furthermore, climate change and market globalization have made necessary to improve the production while maintaining fruit quality traits. Goodberry project is developping analytical platforms, covering from transcriptomic to metabolites and volatile compounds analysis, to find new factors controlling plant adaptation, fruit production and quality. In this study we implement the metabolomic analysis of strawberry, raspberry and black currant fruits from the 2017 harvest, as well as 2018 harvest during this year. To analyze and compare the data we use multiomic tools and bioinformatics to extract properly conclusion The analyses take different berry cultivars, adapted to diverse environments, were grown in 2017 and 2018 in different latitudes (Germany, France, Norway, Italy, Poland and Scotland). The data comes from a combination of gas-chromatography-mass spectrometry (GC-TOF-MS) and headspace solid phase micro extraction (HS-SPME) coupled with GC-MS was used to semi-quantify fruit primary metabolome and volatilome. Around 50 key primary metabolites, including sugars and acids, which are fundamental factors influencing fruit taste and 75 volatiles, responsible of the aroma, were identified across the different genotypes and climates. Multivariate statistical approaches allow us to point out the genetic and environmental factors underlying complex metabolic traits involved in fruit quality. Preliminary analysis showed that both climate and genetic factors influence primary metabolite and volatile content, even if the environment seems to have a stronger impact on the first one.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Application of multiomic technologies to study the environmental impact on berry fruit quality

    Get PDF
    Berries, such as strawberry, raspberry and black currant, are well appreciated for their delicate flavor and nutraceutical properties, with consumer demand increasing over the last years. However, climate change and market globalization have made necessary to improve the production while maintaining fruit quality traits. Among the EU GoodBerry project’s objetive are develop state-of-the-art analytical platforms, covering from transcriptomic to metabolites and volatile compounds analysis, to find new factors controlling plant adaptation, fruit production and quality and use the data to face climate changes. Here we present the metabolomic analysis of strawberry, raspberry and black currant fruits from the 2017 harvest. Different berry cultivars, adapted to diverse environments, were grown in 2017 and 2018 in different latitudes (Germany, France, Norway, Italy and Poland) combination of spectrometry techniques was used to semi-quantify fruit primary metabolome and volatilome. Around 50 key primary metabolites, including sugars and acids, which are fundamental factors influencing fruit taste and 75 volatiles, responsible of the aroma, were identified across the different genotypes and climates. Multivariate statistical approaches allow us to point out the genetic and environmental factors underlying complex metabolic traits involved in fruit quality.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors

    Get PDF
    peer reviewedObjective: The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available. Methods: We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership–Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses. Results: A higher polygenic resilience score was associated with a lower risk for PD (β = −0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2 = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci. Interpretation: The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 202

    Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe

    Get PDF
    Aerosols influence the Earth\u27s energy balance directly by modifying the radiation transfer and indirectly by altering the cloud microphysics. Anthropogenic aerosol emissions dropped considerably when the global COVID-19 pandemic resulted in severe restraints on mobility, production, and public life in spring 2020. We assess the effects of these reduced emissions on direct and indirect aerosol radiative forcing over Europe, excluding contributions from contrails. We simulate the atmospheric composition with the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model in a baseline (business-as-usual) and a reduced emission scenario. The model results are compared to aircraft observations from the BLUESKY aircraft campaign performed in May–June 2020 over Europe. The model agrees well with most of the observations, except for sulfur dioxide, particulate sulfate, and nitrate in the upper troposphere, likely due to a biased representation of stratospheric aerosol chemistry and missing information about volcanic eruptions. The comparison with a baseline scenario shows that the largest relative differences for tracers and aerosols are found in the upper troposphere, around the aircraft cruise altitude, due to the reduced aircraft emissions, while the largest absolute changes are present at the surface. We also find an increase in all-sky shortwave radiation of 0.21 ± 0.05 W m⁻² at the surface in Europe for May 2020, solely attributable to the direct aerosol effect, which is dominated by decreased aerosol scattering of sunlight, followed by reduced aerosol absorption caused by lower concentrations of inorganic and black carbon aerosols in the troposphere. A further increase in shortwave radiation from aerosol indirect effects was found to be much smaller than its variability. Impacts on ice crystal concentrations, cloud droplet number concentrations, and effective crystal radii are found to be negligible
    corecore