8 research outputs found

    Mapping the conformational landscape of the neutral network of RNA sequences that connect two functional distinctly different ribozymes

    No full text
    During evolution of an RNA world, the development of enzymatic function was essential. Such enzymatic function was linked to RNA sequences capable of adopting specific RNA folds that possess catalytic pockets to promote catalysis. Within this primordial RNA world, initially evolved self-replicating ribozymes presumably mutated to ribozymes with new functions. Schultes and Bartel (Science 2000, 289, 448–452) investigated such conversion from one ribozyme to a new ribozyme with distinctly different catalytic functions. Within a neutral network that linked these two prototype ribozymes, a single RNA chain could be identified that exhibited both enzymatic functions. As commented by Schultes and Bartel, this system possessing one sequence with two enzymatic functions serves as a paradigm for an evolutionary system that allows neutral drifts by stepwise mutation from one ribozyme into a different ribozyme without loss of intermittent function. Here, we investigated this complex functional diversification of ancestral ribozymes by analyzing several RNA sequences within this neutral network between two ribozymes with class III ligase activity and with self-cleavage reactivity. We utilized rapid RNA sample preparation for NMR spectroscopic studies together with SHAPE analysis and in-line probing to characterize secondary structure changes within the neutral network. Our investigations allowed delineation of the secondary structure space and by comparison with the previously determined catalytic function allowed correlation of the structure-function relation of ribozyme function in this neutral network

    More than proton detection - new avenues for NMR spectroscopy of RNA

    No full text
    Ribonucleic acid oligonucleotides (RNAs) play pivotal roles in cellular function (riboswitches), chemical biology applications (SELEX-derived aptamers), cell biology and biomedical applications (transcriptomics). Furthermore, a growing number of RNA forms (long non-coding RNAs, circular RNAs) but also RNA modifications are identified, showing the ever increasing functional diversity of RNAs. To describe and understand this functional diversity, structural studies of RNA are increasingly important. However, they are often more challenging than protein structural studies as RNAs are substantially more dynamic and their function is often linked to their structural transitions between alternative conformations. NMR is a prime technique to characterize these structural dynamics with atomic resolution. To extend the NMR size limitation and to characterize large RNAs and their complexes above 200 nucleotides, new NMR techniques have been developed. This Minireview reports on the development of NMR methods that utilize detection on low-γ nuclei (heteronuclei like 13C or 15N with lower gyromagnetic ratio than 1H) to obtain unique structural and dynamic information for large RNA molecules in solution. Experiments involve through-bond correlations of nucleobases and the phosphodiester backbone of RNA for chemical shift assignment and make information on hydrogen bonding uniquely accessible. Previously unobservable NMR resonances of amino groups in RNA nucleobases are now detected in experiments involving conformational exchange-resistant double-quantum 1H coherences, detected by 13C NMR spectroscopy. Furthermore, 13C and 15N chemical shifts provide valuable information on conformations. All the covered aspects point to the advantages of low-γ nuclei detection experiments in RNA

    Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.

    No full text
    In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding

    Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation

    No full text
    In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding

    Evaluation of (15)N-detected H-N correlation experiments on increasingly large RNAs.

    No full text
    Recently, (15)N-detected multidimensional NMR experiments have been introduced for the investigation of proteins. Utilization of the slow transverse relaxation of nitrogen nuclei in a (15)N-TROSY experiment allowed recording of high quality spectra for high molecular weight proteins, even in the absence of deuteration. Here, we demonstrate the applicability of three (15)N-detected H-N correlation experiments (TROSY, BEST-TROSY and HSQC) to RNA. With the newly established (15)N-detected BEST-TROSY experiment, which proves to be the most sensitive (15)N-detected H-N correlation experiment, spectra for five RNA molecules ranging in size from 5 to 100 kDa were recorded. These spectra yielded high resolution in the (15)N-dimension even for larger RNAs since the increase in line width with molecular weight is more pronounced in the (1)H- than in the (15)N-dimension. Further, we could experimentally validate the difference in relaxation behavior of imino groups in AU and GC base pairs. Additionally, we showed that (15)N-detected experiments theoretically should benefit from sensitivity and resolution advantages at higher static fields but that the latter is obscured by exchange dynamics within the RNAs
    corecore