7 research outputs found

    Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe progno- sis, and with a long-standing need for more effective therapeutic approaches. However, treatment with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM pa- tients. In this scenario, epigenetic modifications may negatively regulate the interplay between immune and malignant cells within the tumor microenvironment, thus contributing to the highly immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluo- rimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine, on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform. Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that treatment with guadecitabine led to the activation of genes involved in several immune-related func- tional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes, DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the specific histologic subtypes

    Immunomodulatory Properties of DNA Hypomethylating Agents: Selecting the Optimal Epigenetic Partner for Cancer Immunotherapy

    Get PDF
    DNA hypomethylating agents (DHAs) play a well-acknowledged role in potentiating the immunogenicity and the immune recognition of neoplastic cells. This immunomodulatory activity of DHAs is linked to their ability to induce or to up-regulate on neoplastic cells the expression of a variety of immune molecules that play a crucial role in host-tumor immune interactions. To further investigate the clinical potential of diverse epigenetic compounds when combined with immunotherapeutic strategies, we have now compared the tumor immunomodulatory properties of the first generation DHAs, azacytidine (AZA) and decitabine (DAC) and of the next generation DHA, guadecitabine. To this end, human melanoma and hematological cancer cells were treated in vitro with 1 mu M guadecitabine, DAC or AZA and then studied by molecular and flow cytometry analyses for changes in their baseline expression of selected immune molecules involved in different mechanism(s) of immune recognition. Results demonstrated a stronger DNA hypomethylating activity of guadecitabine and DAC, compared to AZA that associated with stronger immunomodulatory activities. Indeed, the mRNA expression of cancer testis antigens, immune-checkpoint blocking molecules, immunostimulatory cytokines, involved in NK and T cell signaling and recruiting, and of genes involved in interferon pathway was higher after guadecitabine and DAC compared to AZA treatment. Moreover, a stronger up-regulation of the constitutive expression of HLA class I antigens and of Intercellular Adhesion Molecule-1 was observed with guadecitabine and DAC compared to AZA. Guadecitabine and DAC seem to represent the optimal combination partners to improve the therapeutic efficacy of immunotherapeutic agents in combination/sequencing clinical studies

    Circulating Levels of PD-L1 in Mesothelioma Patients from the NIBIT-MESO-1 Study: Correlation with Survival

    No full text
    Targeting of the programmed cell death protein (PD)-1/programmed death-ligand 1 (PD-L1) axis has shown a significant clinical impact in several tumor types. Accordingly, our phase II NIBIT-MESO-1 study demonstrated an improved clinical efficacy in mesothelioma patients treated with the anti-PD-L1 durvalumab combined with the anti-cytotoxic T-lymphocyte antigen (CTLA)-4 tremelimumab, as compared to tremelimumab alone. Due to the promising therapeutic activity of immune check-point inhibitors (ICIs) in mesothelioma patients, the identification of biomarkers predictive of response to treatment is of crucial relevance. The prognostic role of soluble PD-L1 (sPD-L1) proposed in cancer patients prompted us to investigate this protein in sera from mesothelioma patients (n = 40) enrolled in the NIBIT-MESO-1 study. A significant (p < 0.001) increase in sPD-L1 levels was detected in patients after the first cycle and during therapy vs. baseline. A longer overall survival (OS) was observed in patients with sPD-L1 concentrations below (at baseline, d1C2, d1C5 (p < 0.01)) or FC values above (p < 0.05 at d1C2, d1C3, d1C5) their statistically calculated optimal cut-offs. On the basis of these initial results, the specific role of CTLA-4-, PD-L1-, or PD-1-targeting on sPD-L1 release was then investigated in sera from 81 additional ICI-treated solid cancer patients. Results showed a significant (p < 0.001) increase of sPD-L1 levels during therapy compared to baseline only in anti-PD-L1-treated patients, supporting the specific involvement of PD-L1 targeting in the release of its soluble form. Our findings suggest that sPD-L1 represents a predictive biomarker of clinical response to anti-PD-L1 cancer immunotherapy

    Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis

    Get PDF
    Background: Obesity has tremendous impact on the health systems. Its epigenetic bases are unclear. MacroH2A1 is a variant of histone H2A, present in two alternatively exon-spliced isoforms macroH2A1.1 and macroH2A1.2, regulating cell plasticity and proliferation, during pluripotency and tumorigenesis. Their role in adipose tissue plasticity is unknown. Results: Here, we show evidence that macroH2A1.1 protein levels in the visceral adipose tissue of obese humans positively correlate with BMI, while macroH2A1.2 is nearly absent. We thus introduced a constitutive GFP-tagged transgene for macroH2A1.2 in mice, and we characterized their metabolic health upon being fed a standard chow diet or a high fat diet. Despite unchanged food intake, these mice exhibit lower adipose mass and improved glucose metabolism both under a chow and an obesogenic diet. In the latter regimen, transgenic mice display smaller pancreatic islets and significantly less inflammation. MacroH2A1.2 overexpression in the mouse adipose tissue induced dramatic changes in the transcript levels of key adipogenic genes; genomic analyses comparing pre-adipocytes to mature adipocytes uncovered only minor changes in macroH2A1.2 genomic distribution upon adipogenic differentiation and suggested differential cooperation with transcription factors. MacroH2A1.2 overexpression markedly inhibited adipogenesis, while overexpression of macroH2A1.1 had opposite effects. Conclusions: MacroH2A1.2 is an unprecedented chromatin component powerfully promoting metabolic health by modulating anti-adipogenic transcriptional networks in the differentiating adipose tissue. Strategies aiming at enhancing macroH2A1.2 expression might counteract excessive adiposity in humans
    corecore