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Abstract: Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe progno-
sis, and with a long-standing need for more effective therapeutic approaches. However, treatment
with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM pa-
tients. In this scenario, epigenetic modifications may negatively regulate the interplay between
immune and malignant cells within the tumor microenvironment, thus contributing to the highly
immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to
further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we
investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA
hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or
EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluo-
rimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine,
on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform.
Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination
with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation
of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and
cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that
treatment with guadecitabine led to the activation of genes involved in several immune-related func-
tional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes,
DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest
in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new
epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the
specific histologic subtypes.

Keywords: epigenetic drugs; DNA methylation; immunotherapy; malignant pleural mesothelioma

1. Introduction

Malignant pleural mesothelioma (MPM) is a low-frequency thoracic neoplasm arising
from mesothelial cells of the pleural cavity, featuring a high aggressiveness (5-year sur-
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vival rate of about 5%) [1]. The prognosis is poor, with an almost invariably fatal course
within 24 months from the diagnosis and few long-term survivors [2]. MPM exhibits the
histological subdivision of MPM into epithelioid, sarcomatoid and biphasic subtypes com-
prising about 50–60%, 10–20% and 25–35% of all MPM, respectively [3]. The histopathology
strongly influences patients’ survival, thus defining a crucial prognostic factor. The best
outcome has been observed for the epithelioid variant; conversely, the sarcomatoid phe-
notype portends a particularly dismal prognosis; finally, the biphasic subtype shows an
intermediate survival, depending on the prevalent component of the tumor [4,5]. This
histological differentiation of MPM cells suggests that the epithelial-to-mesenchymal tran-
sition (EMT) process, by which epithelial cells lose their polarity and cell contacts, acquire
the expression of mesenchymal markers, and manifest a migratory phenotype, represents
an event in MPM progression [6,7]. Moreover, a substantial switch from epithelial markers
(E-cadherin) to mesenchymal markers (N-cadherin) through epithelioid to biphasic and
sarcomatoid subtypes was demonstrated, suggesting the potential usefulness of these
EMT-markers in the diagnosis of mesothelioma [8,9].

Despite the accumulation of novel insights about MPM biology [10,11] and the con-
siderable number of ongoing clinical investigations [12], MPM is still an aggressive cancer
with a dismal prognosis and limited clinical benefits. Immune check-point inhibitors (ICI)
therapy represents an attractive strategy in the treatment of solid tumors in particular when
given in combination regimes. The clinical efficacy of combined ICI therapies in MPM
patients was firstly proved in the phase II NIBIT-MESO-1 study, investigating the combina-
tion of the anti-CTLA-4 monoclonal antibody (mAb) tremelimumab with the anti-PD-L1
mAb durvalumab, as first-/second-line therapy, registering a median overall survival
(OS) of 16.6 months [13]. These results were then confirmed by two other combination
studies: the phase II MAPS-2 trial, comparing the anti-CTLA-4 mAb ipilimumab and the
anti-PD-1 mAb nivolumab vs. nivolumab alone [14]; the single-arm phase II INITIATE
study, investigating the combination of ipilimumab plus nivolumab in MPM patients with
disease progression or recurrence after platinum-based treatment [15]. Further support
to the efficacy of combined ICI therapy in MPM derived from the results of the phase III
CheckMate 743 trial, in which first-line nivolumab plus ipilimumab significantly improved
the survival of patients when compared to standard chemotherapy [16]. Accordingly,
the latest report of the NIBIT-MESO-1 study revealed the potential efficacy and safety
of retreatment with tremelimumab and durvalumab in MPM patients who experienced
disease progression after an initial clinical benefit (i.e., disease control) [17]. Despite these
promising results, a proportion of patients still do not respond to ICI therapy, possibly due
to multiple mechanisms of primary and secondary resistance to the treatment [18]. These
could include epigenetic derangements that are known to contribute to the pathogenesis of
MPM and to its highly immunosuppressive microenvironment [19–21].

Epigenetic modifications include principally DNA methylation, post-translational
modifications (PTMs) of histone proteins, chromatin remodeling components, histone
variant exchange, and non-coding RNAs [5,22]. Unlike genetic mutations, epigenetic alter-
ations are potentially reversible and have great plasticity, thus the possibility of changing
tumor immune contexture through epigenetic compounds represents a promising strategy
to improve the efficacy of cancer immunotherapy. Along this line, it has been highly
demonstrated that epigenetic remodeling of cancer cells by DNA hypomethylating agents
(DHA), in particular decitabine and guadecitabine, induced/up-regulated the expression of
different immune molecules (i.e., HLA class I, cancer testis antigens (CTA), co-stimulatory
molecules, interferon stimulated genes) in cancer cells of different histotypes including
MPM [23–25], resulting in an improved recognition of tumor cells by immune cells [26–30]
that suggested the promising role of DHA to improve the clinical effectiveness of cancer
immunotherapies [31]. Additionally, the use of histone deacetylase inhibitors (HDACi) is
under clinical and preclinical evaluation for cancer treatment, either as monotherapy or in
the combinatorial setting. Specifically, valproic acid (VPA) was demonstrated to be able
to decrease the immunosuppressive activity of myeloid-derived suppressor cells, either
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in vitro or in vivo, in a murine model [32]; the administration of low-dose of trichostatin-A,
potentiated the anti-tumor activity of infiltrating macrophages in various tumors, favoring
the M1-like phenotype and reshaping the tumor microenvironment (TME) [33]; also, VPA
and suberoylanilide hydroxamic acid (SAHA) triggered cell death of epithelioid MPM cells,
and synergized with DHA to induce CTA expression in the remaining living cells, which
became sensitive to lysis mediated by CTA-specific cytotoxic T-cells [34]. HDAC inhibitors
can further synergize with DHA to induce endogenous retrovirus transcription, promote
chemokine-dependent T cell infiltration and favor T cell memory and effector phenotypes,
thereby reverting immune evasion in non-small-cell lung carcinoma (NSCLC) models [35].

Other epigenetic compounds have been demonstrated to modulate immune cell
transcriptional programs. Tazemetostat (EPZ-6438), an inhibitor of the enhancer of zeste
homologue 2 (EZH2i) favored chemokine-dependent T cell attraction as a consequence of
enhanced expression of the immunostimulatory molecules in cancer [35]. Furthermore,
EZH2 was critical for tumor-infiltrating T regulatory lymphocytes (Treg) immunosuppres-
sive functions, and its pharmacologic inhibition not merely reprogrammed Treg activity,
but also led to enhanced CD8+T cell response within a murine colorectal tumor [36].

Based on the encouraging sensitivity of MPM to immunotherapy and on the promis-
ing immunomodulatory effects of epigenetic remodeling, this study focused to compare
the properties of different classes of epigenetic drugs, including agents recently used in
clinical trials (i.e., guadecitabine, EPZ-6438), on MPM cell lines belonging to the three
main subtypes. The identification of guadecitabine as the main driver of the greatest
immunomodulatory effects led us to expand the characterization of the DHA activity by
analyzing changes in gene expression profiles (GEP) of MPM cell lines belonging to the
three subtypes and elucidating the biologic functions of genes representing the expression
signature of epigenetically-treated vs. untreated MPM cells. Results obtained provide the
rationale for the development of new more effective epigenetic-based immunotherapeutic
strategies for the treatment of MPM patients also relating to their histologic prognosis.

2. Results
2.1. Analysis of HLA Class I Antigens and ICAM-1 Expression on MPM Cell Lines Treated with
Epigenetic Drugs

To explore the immunomodulatory activity of different classes of epigenetic drugs on
MPM cell lines, cytofluorimetric analyses of the expression of HLA class I antigens and of
the costimulatory molecule ICAM-1 have been conducted on 5 MPM cell lines untreated
or treated with selected DHA, HDACi, or EZH2i, alone or in combination (Figure S1).
Results obtained showed an up-regulation of HLA class I antigens in all MPM cells treated
with guadecitabine that was statistically significant (p ≤ 0.05) in 4/5 (two sarcomatoid,
1 biphasic and 1 epitheliod) treated cell lines, as compared to untreated cells (Figure 1A,
Table S1). Conversely, only a sporadic up-regulation of HLA class I antigens expression
was observed in MPM cell lines treated with other investigated epigenetic drugs, and a
statistically significant difference was detected in one sarcomatoid cell line treated with
VPA and in two sarcomatoid cell lines treated with EPZ-6438, used alone (Figure 1A,
Table S1). Moreover, the combination of different epigenetic drugs with guadecitabine did
not enhance the up-regulated expression of HLA class I induced by a single treatment.
In fact, a significant difference in HLA class I expression was induced only in one sarco-
matoid cell line by guadecitabine plus VPA, SAHA, or EPZ-6438 combination treatments
(Figure 1A, Table S1). No differences in the percentage of HLA class I antigens positive
cells was observed after any treatment, in all investigated MPM cell lines (data not shown).
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Each data point represents mean value of MFI obtained in 3 independent experiments for each single cell line. 
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Figure 1. Flow cytometry analysis of changes induced by different epigenetic drugs in HLA class I and ICAM-1 molecules
expression. MPM cell lines untreated or treated with guadecitabine, VPA, SAHA, EPZ-6438, or guadecitabine-based
combinations were incubated with (A) anti-human HLA class I or (B) anti-human ICAM-1 mAbs and studied by flow
cytometry. Data obtained were analyzed by Kaluza software. Values reported correspond to MFI in treated vs. untreated
cells. Each data point represents mean value of MFI obtained in 3 independent experiments for each single cell line.

Similar to HLA class I antigens, ICAM-1 expression was upregulated in all MPM cell
lines treated by guadecitabine alone and this up-regulation was statistically significant
(p ≤ 0.05) in 4/5 (one sarcomatoid, one biphasic and two epitheliod) treated cell lines,
as compared to untreated cells (Figure 1B, Table S1). Additionally, in this case, a minor
modulatory effect of ICAM expression was induced by treatment with other investigated
epigenetic drugs. In detail, a statistically significant up-regulation was detected in one
sarcomatoid cell line treated with VPA and in 2/4 (one sarcomatoid and one biphasic)
cell lines treated with SAHA or EPZ-6438, used alone (Figure 1B, Table S1). Again, the
combination of different epigenetic drugs with guadecitabine did not enhance the up-
regulated expression of ICAM-1 induced by single treatment. In fact, a significant difference
in ICAM-1 expression was observed in 3/4 MPM cell lines treated with guadecitabine
plus VPA (one sarcomatoid and two epithelioid) or SAHA (two sarcomatoid and one
epithelioid) and in 2/4 (one sarcomatoid and one epithelioid) MPM cell lines treated with
guadecitabine plus EPZ-6438 (Figure 1B, Table S1).

Lastly, guadecitabine and guadecitabine-based combinations up-regulated the percent-
age of ICAM-1-positive cells in the sarcomatoid MPM cell line with the lowest percentage of
ICAM-1 positive cells and did not affect other investigated MPM cell lines. No differences
were induced in the percentage of ICAM-1 positive cells by other epigenetic drugs in all
MPM cell lines (Table S1).

2.2. Molecular Analysis of CTA Expression in MPM Cell Lines Treated with Epigenetic Drugs

Quantitative real-time RT-PCR analyses were performed to investigate changes in
the expression levels of CTA (i.e., NY-ESO-1, MAGE-A1, and MAGE-A3) induced by the
different investigated epigenetic drugs alone or in combinations, in 5 MPM cell lines. Base-
line levels of NY-ESO-1 and MAGE-A1 were negative in five and two (one epithelioid and
one biphasic) cell lines, respectively; all cell lines were constitutively positive for MAGE-
A3 expression. A de novo expression of NY-ESO-1 was induced by guadecitabine and
guadecitabine-based combinations in 5/5 MPM cell lines (Figure 2A; Table S2). No induc-
tion in the expression of NY-ESO-1 gene was observed with HDACi or EZH2i treatment,
except for the biphasic Meso4 cell line after SAHA or EPZ-6438 treatments (Figure 2A;
Table S2). Guadecitabine and guadecitabine-based combinations induced the expres-
sion of MAGE-A1 in the two constitutively antigen-negative cell lines, and significantly
(p ≤ 0.05) up-regulated the expression in the two constitutively positive sarcomatoid cell
lines (Figure 2B; Table S2). No induction nor upregulation in the expression of MAGE-A1
was observed with HDACi or EZH2i treatment, except for the biphasic cell line and for



Epigenomes 2021, 5, 27 5 of 15

one sarcomatoid cell line, in which MAGE-A1 expression was induced and significantly
upregulated, respectively, by VPA (Figure 2B; Table S2). Finally, MAGE-A3 expression
was significantly upregulated in three (two sarcomatoid and one biphasic) cell lines by
guadecitabine and in two (one sarcomatoid and one biphasic), three (two sarcomatoid and
one biphasic) and four (two sarcomatoid, one biphasic and one epithelioid) cell lines by
guadecitabine combined with VPA, SAHA and EPZ-6348, respectively (Figure 2B; Table S2).
No significant modulation in MAGE-A3 expression was observed with HDACi or EZH2i
treatment, except for Meso6 showing a significant decrease in antigen expression after
treatment with VPA (Figure 2C; Table S2).
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cells; empty shape, p-Value >0.05.

2.3. Molecular Analysis of Gene Expression of EMT-Regulating Genes on MPM Cell Lines Treated
with Epigenetic Drugs

To study the effect of different epigenetic drugs on the EMT phenomenon, quantita-
tive real-time RT-PCR analyses were performed to investigate changes in the expression
levels of E-cadherin/CDH1 and N-cadherin/CDH2, induced by the different investigated
epigenetic drugs and their combinations, in five MPM cell lines. Results showed that
the constitutive expression of the CDH1 gene was negative in the sarcomatoid cell lines,
and highly positive in both biphasic and epithelial MPM cell lines (Figure 3A; Table S2).
The expression of CDH1 was induced in the sarcomatoid cell lines only by guadecitabine
or guadecitabine-based combinations. A significant (p ≤ 0.05) up-regulation of CDH1
expression was observed in 1 (epithelioid)/3 CDH1-positive cell lines after guadecitabine
and guadecitabine-combined treatments, and in one biphasic cell line treated with VPA or
guadecitabine plus VPA. Other treatments did not induce any modulation of CDH1 expres-
sion in investigated cell lines (Figure 3A; Table S2). Conversely, constitutive expression of
the CDH2 gene was negative in the epithelial cell lines, and positive in both sarcomatoid
and biphasic MPM cell lines (Figure 3B; Table S2). The expression of CDH2 was induced
only by guadecitabine plus VPA in the two constitutively antigen-negative epithelioid
cells and significantly upregulated only by guadecitabine plus SAHA combination in one
sarcomatoid cell line compared to control. Importantly, no induction or up-regulation
in CDH2 expression was observed after treatment with guadecitabine alone (Figure 3B;
Table S2).
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Student t) vs. untreated cells; empty shape, p-Value >0.05.

2.4. nCounter Gene Expression Panel Analysis

The GEP of 10 MPM cell lines untreated or treated with guadecitabine was eval-
uated using the NanoString PanCancer IO 360 panel on the nCounter SPRINT Profiler.
Results demonstrated that, among 770 investigated genes, a mean of 300.8 (range: 236–375)
genes were differentially (Log2 ratio ≥ 0.58; Log2 ratio ≤ −0.58) expressed in treated
vs. untreated cells. Mean of 68.3% (range: 46.7–83.7%) and 31.7% (range: 16.3–53.3%)
DEG were respectively up-regulated (FC ≥ 0.58) and downregulated (FC ≤ −0.58), in the
10 investigated MPM cell lines, by treatment.

According to Ingenuity Pathway Analysis (IPA), 248 canonical pathways were mod-
ulated (Z-score ≥ 2 or Z-score ≤ −2) in treated compared to untreated cells, in at least
one cell line (Table S3). Among the most frequently (in at least three cell lines) activated
(Z-score ≥ 2) ones were those involved in the modulation of the immune response (e.g.,
crosstalk between dendritic cells and natural killer cells, dendritic cell maturation, acute
phase response- and TREM1-signalling) with a frequency of activation ranging from 50%
to 100% (Figure 4A; Table S3). In particular, the most frequently activated pathways, ac-
tivation of the crosstalk between dendritic cells and natural killer (NK) cells signaling,
include genes modulated by guadecitabine, such as CD209, CD28, CD40 and ligand, CD80,
CD86, FAS and ligand, some classical HLA genes family members, IL-2/-4/-6, ICAM3,
MICA, MICB, tumor necrosis factor (TNF), and toll-like receptor (TLR)-3/-4/-7/-9 among
all (Table S3).

IPA upstream regulator analysis identified 660 upstream regulators responsible for
changes in the expression profiles of at least one MPM cell line after guadecitabine treatment
(Table S4). Among these, the most frequently (in at least three MPM cell lines) activated
ones were mainly related to the pathways of interferon (IFN)-γ signaling (e.g., IFNL1, IRF1,
IRF3, IFNA2, IFNB1, IFNA1/IFNA13) and TNF-α signaling (e.g., TNFSF14 and PRL), with
a frequency of activation ranging from 62.5% to 85.71% (Figure 4B; Table S4).

Stemming from these results, we performed a subtype-specific investigation of the
modulation of functional classes of immune-related genes, after guadecitabine treatment.
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through IPA software, filtered by Z-score ≥ 2, and cumulated based on the frequency of modulation (activation and
inhibition) for canonical pathways (A) and upstream regulators (B).

A strongly upregulated expression of multiple CTA genes was observed in all the three
DHA-treated subtypes (Figure 5; Table S5). Comprehensively, a predominant upregulation
of genes involved in several immune-related functional classes, such as IFN-γ and IFN-
related genes, HLA class I, positive and negative co-stimulation, cytokines, chemokines
and receptors and regulation of inflammation, was observed in the sarcomatoid MPM
cell lines, compared to the lower effects observed in other investigated MPM subtypes
(Figure 5; Table S5).
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used to depict the predominant up- (red) or down- (green) regulation of genes belonging to the selected functional classes
calculated as follow: (%up − %down) × (%up + %down)/100.

2.5. Validation of Gene Expression Profiling Changes by Guadecitabine

Quantitative real-time RT-PCR assays were performed to validate changes induced by
guadecitabine in GEP of 10 MPM cell lines, by quantifying the expression of nine DEGs,
randomly selected for their differential up- or down-regulation in all treated vs. untreated
cell lines (Table S6). These included immunogenic CTA (i.e., NY-ESO-1 and MAGE-A1),
immune-related genes (i.e., IFN-γ, IFNGR, interleukin (IL)-1β, IL-10, IL-6), and EMT
markers (CDH1 and CDH2 cadherins). A significant correlation (r = 0.99; p < 0.001) was
proved between changes (mean FC values) induced by guadecitabine in the constitutive
levels of investigated genes expression, measured by quantitative real-time PCR or by
nCounter multiplex gene expression analysis in the 10 MPM cell lines (Figure 6).
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Figure 6. Correlation among changes in the expression values of selected genes after guadecitabine
treatment from nCounter and quantitative real-time PCR analyses. Quantitative real-time PCR
assays were performed in 10 untreated and guadecitabine-treated MPM cell lines to quantify the
expression of 9 randomly selected genes. Mean values of FC (mFC) induced by guadecitabine in the
constitutive levels of gene-specific mRNA expression were correlated to the mFC values obtained by
the Nanostring analysis using Pearson’s correlation coefficient.

3. Discussion

Despite the accumulation of novel insights about mesothelioma biology and the
considerable number of clinical investigations ongoing, MPM is still an aggressive cancer
with a dismal prognosis and limited clinical benefit. ICI therapy represents an attractive
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strategy in the treatment of solid tumors; however, modest results have been obtained
by single-agent or combined ICI-targeted immunotherapy, due to multiple mechanisms
of resistance [18]. Since epigenetic modifications are known to contribute to the highly
MPM immunosuppressive microenvironment [19], it is reasonable to explore the efficacy
of epigenetic compounds in MPM, in the attempt to improve tumor immunogenicity,
remodel tumor phenotype and provide a rationale for epigenetic-based strategies able to
enhance the efficacy of immunotherapy. However, limited studies have been conducted
to investigate the immunomodulatory activity of different classes of epigenetic drugs
(i.e., HDACi or EZH2i) in MPM, compared to the well-characterized DHA; and even
more limited are the studies that investigated the potential of combining DHA with these
other epigenetic compounds in MPM [34,37,38]. This study aims to provide this missing
information exploiting the availability of MPM cells of different histologic subtypes.

Along this line, the up-regulated expression of HLA class I antigens and of the co-
stimulatory molecule, ICAM-1, induced by treatment with guadecitabine of MPM cells,
alone or combined with VPA, SAHA, or EPZ-6438 to the DHA, identifies guadecitabine as
the main driver of the immunomodulatory activity observed. This assertion is sustained by
the increased levels of CTA expression observed in the three investigated MPM subtypes
treated with guadecitabine alone or in combination. Accordingly, similar observations
were recently reported using HDACi, at doses below optimal toxicity, that enhanced CTA
expression in MPM epithelioid cells pre-treated with decitabine [34]. Therefore, among
different available epigenetic drugs, guadecitabine represents a promising enhancer of
immunogenicity of MPM cells and a potential inducer of increased immune cell recognition
of tumor cells.

On this basis, we expanded the characterization of the immunomodulatory effect
of guadecitabine on MPM cell lines through the nCounter methodology to comprehen-
sively investigate changes in the expression of a wide number of genes related to tumor-,
microenvironment- and immune response-signatures, after DHA treatment.

The demonstration that modulation of immune response was among the most fre-
quently activated canonical pathway supports, in a broader view, the possibility of using
guadecitabine to modulate MPM phenotype making it more immunogenic and possibly
more responsive to immunotherapy. The activation of the crosstalk between dendritic
cells and NK cells signaling was found to be the most frequently activated pathway in
DHA-treated MPM cell lines. Previous data report how dendritic cells can trigger the
NK-mediated innate immunity in HLA class I-negative cells, thus promoting NK cell
killing and IFN-γ production in vivo [39]. From cytofluorimetric assays, we observed that
the tested cell lines were positive for HLA class I antigens and guadecitabine up-regulated
their surface expression in all investigated cell lines. In addition, the activation of the
dendritic-NK cells crosstalk, induced by guadecitabine in the 50% of cell lines, was specif-
ically observed in two biphasic and three sarcomatoid MPM cell lines (data not shown).
Altogether these results support the hypothesis that guadecitabine could enhance both
adaptive and non-adaptive immunity in the most aggressive MPM histological subtypes.
Moreover, we found that the most frequently activated upstream regulator were mainly
related to the IFN-γ signaling. This is of pivotal importance, given the involvement of
IFN-γ in host–tumor interactions and in mechanisms of tumor resistance to therapeutic
CTLA-4 blockade [40,41]. Moreover, guadecitabine exerted its strongest action in inducing
IFN-related genes in the sarcomatoid phenotype, in which we observed, among others, a
higher up-regulation of the ISG15 gene and its target proteins (e.g., MX1) required for NK
cells proliferation, neutrophils chemotaxis, and IFN-γ-inducing cytokines production [42],
compared to biphasic and epithelioid phenotypes (Table S5). These data confirm results
about the epigenetic activation of the immune response through the IFN signaling, pre-
viously obtained in cell lines of different tumor histotypes [23,43], supporting the thesis
that DHA could increase the immune response against MPM tumor cells, potentially also
with sarcomatoid features. Our data also confirmed the immunomodulatory capabilities
of guadecitabine, which induced a strong upregulation of CTA, especially CTAG1B (NY-
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ESO-1) and MAGE family members, in all the three histological subtypes of MPM, able
to potentially boost both humoral and cell-mediated immune responses. Contrarily to
the well-known activity of CTA, the role of TNF-dependent immune response in cancer
progression is contradictory. Although some members of the superfamily can induce an
immune response through the release of “danger signals”, other components seem to
be pro-tumorigenic [44]. Based on our results, guadecitabine induced TNFRSF10A (in
the three histotypes) and TNFRSF1B (in sarcomatoid and biphasic cell lines), sustaining
cell death signals and apoptosis, but also CD70 (in seven mixed cell lines), which could
potentially enhance the generation of cytolytic T cells and contribute to T cell activation.
Moreover, a recent study reports the overexpression of the mesenchymal-associated TN-
FRSF1A to be strongly related to poor prognosis, and its knockdown to inhibit proliferation
and migration of tumor cell lines in vitro [45]; also, it seems to induce the production of
IL-17 by CD4+ T cells, recruiting myeloid cells and supporting tumor growth [46]. We
registered the down-regulation of TNFRSF1A, especially in sarcomatoid and biphasic cell
lines; this could be a mechanism, induced by guadecitabine, to impair tumor progression
and to avoid the recruitment of immunosuppressive cells, that act as a barrier to cancer
immunotherapy, also taking into consideration the down-regulation of the expression of
IL17A-specific mRNA observed in the aforementioned phenotypes.

DHA were also demonstrated to sensitize tumors to ICI treatment through the
up-regulated expression of immune checkpoint molecules [23,47]. In line with this,
guadecitabine induced a strong up-regulation of CTLA-4 in sarcomatoid and biphasic
cell lines, as well as of PD-L1 (CD274) in the biphasic phenotype, and of the co-stimulatory
molecule CD40 in 50% of cell lines, making these molecules more targetable by immunother-
apeutic strategies and supporting the use of epigenetic drugs in combination with immune
checkpoint mAbs in the clinical setting (Table S5).

We reported the expression of the HLA-related molecule and migration inhibitory
factor (MIF) ligand CD74, which represents an independent prognostic factor of survival
for MPM patients, whatever the histological subtype, being, however, more expressed in
the epithelial type; indeed, its low tumoral expression was associated with dismal progno-
sis [48]. Some studies also support the CD74 involvement in the prevention of the EMT
process in other tumor histotypes [49–51]. CD74 was up-regulated by the treatment with
guadecitabine only in cell lines of the sarcomatoid and biphasic phenotypes, encouraging
the use of DHAs to revert mesenchymal features of MPM. Additionally, the induction of
the expression of epithelial markers, such as E-cadherin, and the absent modulation of the
mesenchymal markers, for example, N-cadherin and NCAM, observed after guadecitabine
in sarcomatoid MPM cells, strengthens the interesting role of DNA hypomethylation in
the modeling of the MPM aggressive phenotype, associated to the switch from epithelial
markers to mesenchymal markers [9].

Although the number of investigated MPM cell lines was limited, the sensitivity to
epigenetic drugs treatment, heterogeneously observed among MPM cell lines belonging to
the three different subtypes, was more evident in the most aggressive sarcomatoid MPM
subtype, supporting the need to develop personalized combination therapies to render
these aggressive tumors more responsive to immunotherapy.

Comprehensively these studies laid the groundwork for planning further in vivo
studies to demonstrate the potential of guadecitabine-based immunotherapeutic strategies
for MPM treatment, considering also the influence of MPM subtypes in the epigenetic
drugs’ sensitivity.

4. Materials and Methods
4.1. Cell Lines

Ten MPM cell lines were selected in order to represent the three main subtypes:
the epithelioid Meso1 and Meso6, the biphasic Meso4, Meso5, Meso7 and Meso13, and
the sarcomatoid Meso2, Meso3, Meso8 and Meso11. All cell lines were established by
our group from pleural effusions of MPM patients deal with in the University Hospital
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of Siena, under approval by the Committee on Human Research. All cell lines were
cultured in HAM’s F-12 medium (Biochrom, Berlin, Germany) supplemented with 10%
heat-inactivated fetal bovine serum (Biochrom, Berlin, Germany), 2 mML-glutamine, and
100 µg/µL of penicillin/streptomycin (Biochrom, Berlin, Germany).

4.2. Monoclonal Antibodies and Epigenetic Drugs

PE mouse anti-human ICAM-1 clone 84H10 monoclonal antibody (mAb) was pur-
chased from Beckman Coulter and alexafluor 488 mouse anti-human HLA-ABC (class I)
clone W6/32 mAb was purchased from Biolegend. Guadecitabine was purchased from
MedChemExpress LLC (Monmouth Junction, NJ, USA); HDAC inhibitors, VPA and SAHA,
were purchased from Sigma Aldrich Corporation (St. Luis, MO, USA) and Cayman Chem-
ical (Ann Arbor, MI, USA), respectively and the EZH2i EPZ-6438 was purchased from
Selleck Chemicals (Houston, TX, USA).

4.3. In Vitro MPM Cells Treatment with Combined Epigenetic Drugs

MPM cell lines were seeded in T75 tissue culture flasks at a density of 1 × 106/13 mL
of complete medium (day 0) and treated with 1 µM guadecitabine [26] every 12 h for 2 days
(day 1, day 2), or with 1mM VPA [34], 1.25 µM SAHA [34] or 1 µM EPZ-6438 [52] at day 3,
and harvested at day 6. Combinatorial treatment of HDACi or EZH2i with guadecitabine
maintained the same schedule of single treatments. Control cells were treated under
similar experimental conditions in the absence of drugs. DNA hypomethylating activity of
guadecitabine 1µM was confirmed by LINE-1 methylation assay performed on 10 MPM
cells (Figure S1) as previously described [23].

4.4. Flow Cytometry Analysis

Cell surface expression of antigens on MPM cells was assessed by direct immunoflu-
orescence staining followed by flow cytometry utilizing BD FACS Canto ™ (Beckman
Coulter, Brea, CA, USA), according to the manufacturer’s instructions. Results were ex-
pressed as mean fluorescence intensity (MFI) of cell surface staining with respect to the
unstained cells. The cell population was gated on FSC/SSC parameters and live cells were
discriminated based on 7 AAD. Representative gating strategy was reported in Figure S2.
Data were analyzed with the Kaluza® Flow Analysis Software (Beckman Coulter, Brea,
CA, USA). p-Value was calculated by paired Student t-test between values of MFI of surface
molecules expressed on drugs-treated cells compared to untreated cells.

4.5. Quantitative Real-Time PCR Analysis

Total RNA was extracted by TRIzol reagent (Invitrogen, CA, USA), according to the
manufacturer’s instruction and digested with RNAse-free DNAse (Roche Diagnostics
GmbH, Mannheim, Germany). Synthesis of cDNA was performed on 2 µg of total RNA
using M-MLV reverse transcriptase (Invitrogen, CA, USA) and random hexamer primers
(Promega, Madison, WI, USA), according to the manufacturer’s instructions. Absolute
quantifications were carried out using calibration curves, based on known scalar dose con-
centrations of recombinant plasmid DNA containing both the targets and the endogenous
reference (i.e., β-actin) genes. For each experimental sample, the amount of target and
of the endogenous reference was determined extrapolating values from the appropriate
calibration curves (Figure S3). Then, the target amount is divided by the endogenous refer-
ence amount to obtain a normalized target value. QuantStudio™ 5 Real-Time PCR System
(Applied Biosystems™, San Francisco, CA, USA) and its analyses software were used to
conduct the quantitative real-time PCR analyses. The primers used for the quantitative
real-time PCR analyses are listed in Table 1. Gene expression was considered positive if
numbers of target gene/β-actin molecules were ≥10 × 10−4.
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Table 1. Primer sequences sets for quantitative real-time PCR analysis.

Forward Sequence Reverse Sequence

NY-ESO-1 5′-TGCTTGAGTTCTACCTCGCCA-3′ 5′-TATGTTGCCGGACACAGTGAA-3′

MAGE-A1 5′-GCCAAGCACCTCTTGTATCCTG-3′ 5′-GGAGCAGAAAACCAACCAAATC-3′

MAGE-A3 5′-TGTCGTCGGAAATTGGCAGTAT-3′ 5′-CAAAGACCAGCTGCAAGGAACT-3′

CDH1 5′-AGAGACTGGGTTATTCCTCC-3′ 5′-GGATTTGATCTGAACCAGGT-3′

CDH2 5′-CCTTTCAAACACAGCCACGG-3′ 5′-TGTTTGGGTCGGTCTGGATG-3′

IL-1β 5′-ACTTGTTCTTTGAAGCTGATGGC-3′ 5′-CTGTAGTGGTGGTCGGAGATTC-3′

IFN-γ 5′-CAGGTCATTCAGATGTAGCGGAT-3′ 5′-ATGTCTTCCTTGATGGTCTCCAC-3′

IFNGR 5′-CATCACGTCATACCAGCCATTT-3′ 5′-ATGTCTTCCTTGATGGTCTCCAC-3′

IL-6 5′-AACCTGAACCTTCCAAAGATGG-3′ 5′-TCTGGCTTGTTCCTCACTACT-3′

IL-10 5′-CGGCGCTGTCATCGATTT-3′ 5′-TTAAAGGCATTCTTCACCTGCTC-3′

4.6. Nanostring Gene Expression Profiling

Total RNA (80ng) extracted from 10 MPM cell lines untreated or treated with guadecitabine
was analyzed with the nCounter® SPRINT Profiler (NanoString Technologies, Seattle, WA,
USA). The PanCancer IO 360™ gene expression panel was used to evaluate simultaneously
the number of 770 mRNA targets involved in the crucial interplay between the immune
system, tumor and tumor microenvironment. Raw data were processed into a signature
matrix using nSolver Analysis Software version 4.0 (NanoString Technologies Inc., Seattle,
WA, USA). All Log2 ratios were generated by the nSolver® Analysis Software.

4.7. Statistical Analysis

A paired Student t-test was used to calculate p-value for cytofluorimetric and molecu-
lar data and p < 0.05 was considered statistically significant. DEGs were selected if genes
showed a Log2 ratio ≥ 0.58 or ≤−0.58 in guadecitabine-treated MPM lines vs. untreated
ones and analyzed by IPA software to identify canonical pathways and upstream regulators
modulated by treatment. In detail, modulation, activation, and inhibition scores of canoni-
cal pathways and upstream regulators were calculated counting the number of tumor cell
lines for which a specific pathway was modulated (Z-score ≥ 2 or Z-score ≤ −2), activated
(Z-score ≥ 2), or inhibited (Z-score ≤ −2), by guadecitabine compared to baseline. % of
activation or inhibition was calculated as the ratio between the activation and inhibition
frequency, respectively, and the modulation score.

The modulation of genes belonging to a specific functional class was calculated
as follow:

[(%up−%down)× (%up + %down)/100]. Correlation between mFC in the expression
of selected genes, measured by nCounter assay and quantitative real-time PCR analyses,
was evaluated by Pearson’s correlation coefficient (r).

Statistical analyses were carried out by GraphPad Prism 7.05 (GraphPad Software Inc.,
San Diego, CA, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/epigenomes5040027/s1, Figure S1: Methylation status of LINE-1 in 10 MPM cell lines treated
with guadecitabine; Figure S2: Flow cytometry analysis of MPM cell lines untreated or treated with
epigenetic drugs; Figure S3: Real-time RT-PCR amplification settings; Table S1: Flow cytometry
analysis of MPM cell lines treated with epigenetic drugs; Table S2: Quantitative RT-PCR analysis of
MPM cell lines treated with epigenetic drugs; Table S3: Canonical pathways modulated in MPM cell
lines by guadecitabine treatment; Table S4: Upstream regulators modulated in MPM cell lines by
guadecitabine treatment; Table S5: Gene specific expression nCounter data in MPM cell lines treated
with guadecitabine vs untreated ones; Table S6: Real-Time PCR and nCounter expression values of
selected genes in MPM cell lines treated with guadecitabine vs untreated ones.

https://www.mdpi.com/article/10.3390/epigenomes5040027/s1
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