25 research outputs found

    Immediate versus delayed loading: comparison of primary stability loss after miniscrew placement in orthodontic patients-a single-centre blinded randomized clinical trial

    Get PDF
    Introduction: The aim of this randomized clinical trial was to compare torque recordings at insertion time and 1 week post-placement between immediately loaded orthodontic miniscrews and an unloaded control group. Trial design: This RCT was designed as parallel with an allocation ratio of 1:1. Methods: Eligibility criteria to enroll patients were: needs of fixed orthodontic treatment, no systemic disease, absence of using drugs altering bone metabolism. All patients were consecutively treated in a private practice and the miniscrews were placed by the same author. Patients received ORTHOImplant (3M Unitek) miniscrews and they were blindly divided in two groups: group 1 screws were unloaded between T0 and T1, group 2 received immediately loaded screws with NiTi coil. For each patient, maximum insertion torque (MIT) was evaluated at T0. After 1 week, without loading, the screw torque was measured again (T1) and at the end of the treatment maximal removal torque was evaluated (T2). Torque variation in the first week was considered as the primary outcome. Randomization: A randomization list was created for the group assignment, with an allocation ratio of 1:1. Blinding: The study was single blinded in regard of the statistical analysis. Results: Patients enrolled in the clinical trial were 51 for a total of 81 miniscrews. The recruitment started in November 2012 and the observation period ended in August 2014. Twenty-six and twenty-five patients were analysed in group 1 and 2, respectively. The MIT mean in each placement time was 18.25 Ncm (SD = 3.00), 11.41 Ncm (SD = 3.51) and 10.52 Ncm (SD = 5.14) at T0, T1, and T2 time, respectively. In group 1, the torque decrease between T1 and T0 was statistically higher compared to group 2 (P value = 0.003). Statistically significant effects of the placement times on MIT were found (P value <0.0001). No serious harm was observed. Limitations: This study was performed using only direct force on the miniscrew and not using the miniscrew as an indirect anchorage. It was not possible to obtain quantitative data on bone quality or root proximity to miniscrews. Conclusions: A significant stability loss was observed in the first week in both groups; Group 1 showed a statistically higher torque loss in the first week when compared to the immediately loaded group. There were statistically significant effects of the measurement times on MIT and of the miniscrew location on MIT. The overall failure rate was 7.4%. Trial registration: This trial was not registered. Protocol: The protocol was not published before trial commencement

    Torque loss after miniscrew placement: An in-vitro study followed by a clinical trial

    Get PDF
    7noTo evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann–Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion.openopenMigliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando SilvestriniMigliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrin

    A Comparative Study Between the Effectiveness of 980 nm Photobiomodulation Delivered by Hand-Piece With Gaussian vs. Flat-Top Profiles on Osteoblasts Maturation

    Get PDF
    Photobiomodulation (PBM) is a clinically accepted tool in regenerative medicine and dentistry to improve tissue healing and repair and to restore the functional disability. The current in vitro study aimed to investigate the photobiomodulatory effects of 980 nm wavelength (the real energy at the target: ~0.9 W, ~0.9 W/cm2, 60 s, ~55 J/cm2 and a single energy ~55 J in CW) on MC3T3-E1 pre-osteoblast, delivered with flattop profile in comparison to the standard profile. The laser groupings and their associated energies were: Group 1 - once per week (total energy 110 J); Group 2 - three times per week (alternate day) (total energy 330 J); Group 3 - five times per week (total energy 550 J). The metabolic activity and the osteoblasts maturation were analyzed by alkaline phosphatase assay, alizarin red S histological staining, immunoblot and/or double immunolabeling analysis for Bcl2, Bax, Runx-2, Osx, Dlx5, osteocalcin, and collagen Type 1. Our data, for the first time, prove that laser irradiation of 980 nm wavelength with flat-top beam profile delivery system, compared to standard-Gaussian profile, has improved photobiomodulatory efficacy on pre-osteoblastic cells differentiation. Mechanistically, the irradiation enhances the pre-osteoblast differentiation through activation of Wnt signaling and activation of Smads 2/3-βcatenin pathway

    Different ways to manage Indocyanine green fluorescence to different purposes in liver surgery. A systematic review.

    Get PDF
    Fluorescent properties of indocyanine green (ICG) for hepatic tumor identification and features have been recently studied. The aim is to review the published data on the use of ICG enhanced fluorescence surgery during liver resection. A systematic search of literature was performed using MEDLINE, EMBASE, Cochrane and Web of Science libraries. For all eligible studies, the following data were extracted: study design, number of cases, management of indocyanine green (dose, time and method of administration), type of surgery, outcome variables, false positive and accuracy value, if reported. For statistical analysis, it was considered significant P<0.05, when published. 19 articles were fully analyzed and data were extracted. A total of 718 cases were globally analyzed as study group. No side effects of ICG were reported in any articles. 12 prospective observational, 1 randomized and 2 case-control studies were found. Three case reports and one experimental on animal model were also included. Detection of superficial lesions, segmental staining, biliary anatomy investigation (biliary leakage detection, biliary tree anatomy) were the main clinical application of fluorescence liver guided surgery. The overall quality of the data currently available is limited but the role of fluorescence guided liver surgery seems promising

    Case Report Recombinant Chromosome 4 from a Familial Pericentric Inversion: Prenatal and Adulthood Wolf-Hirschhorn Phenotypes

    Get PDF
    Pericentric inversion of chromosome 4 can give rise to recombinant chromosomes by duplication or deletion of 4p. We report on a familial case of Wolf-Hirschhorn Syndrome characterized by GTG-banding karyotypes, FISH, and array CGH analysis, caused by a recombinant chromosome 4 with terminal 4p16.3 deletion and terminal 4q35.2 duplication. This is an aneusomy due to a recombination which occurred during the meiosis of heterozygote carrier of cryptic pericentric inversion. We also describe the adulthood and prenatal phenotypes associated with the recombinant chromosome 4

    Natural history of KBG syndrome in a large European cohort

    Get PDF
    KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.</p

    Orthodontic miniscrews: An experimental campaign on primary stability and bone properties

    Get PDF
    Objective: To evaluate the primary stability of different shaped miniscrews through the acquisition of data regarding maximum insertion torque, pullout force, and a radiodiagnosic evaluation of bone characteristics. Materials and methods: Sixty fresh porcine bone samples were scanned by computed tomography (CT) and cone-beam computed tomography (CBCT). By means of a dedicated software, CT and CBCT images were analysed to measure the insertion-site cortical thickness, cortical density, and marrow bone density. Sixty miniscrews of 12 different types were implanted with no predrilling pilot hole in the bone samples. Every device was tightened by means of a digital torque screwdriver and torque data were collected. Subsequently, pullout tests were performed. Spearman and Pearson correlations were employed to compare any relationship between continuous variables. Results: Different types of miniscrews did not show statistically significant differences in their torque value (P = 0.595), instead a significant difference was revealed by considering their load measures (P = 0.039). Cortical bone thickness resulted strongly correlated both with value of load (P &lt; 0.001), and modestly with torque measures (P = 0.004). A strong positive correlation was found between CT and CBCT both for cortical density (P &lt; 0.001) and marrow bone density (P &lt; 0.001). Conclusion: Bone characteristics play the major role in miniscrews primary stability

    The earthworm Dendrobaena veneta (Annelida): A new experimental-organism for photobiomodulation and wound healing

    Get PDF
    Photobiomodulation (PBM) is a manipulation of cellular behavior using non-ablative low intensity light sources. This manipulation triggers a cascade of metabolic effects and physiological changes resulting in improved tissue repair, of benefit in the treatment of tissue injury, degenerative or autoimmune diseases. PBM has witnessed an exponential increase in both clinical instrument technology and applications. It is therefore of benefit to find reliable experimental models to test the burgeoning laser technology for medical applications. In our work, we proposed the earthworm Dendrobaena veneta for the study of non-ablative laser-light effects on wound healing. In our preliminary work, D. veneta has been shown to be positively affected by PBM. New tests using D. veneta were set up to evaluate the effectiveness of a chosen 808 nm-64 J/cm2–1W-CW laser therapy using the AB2799 hand-piece with flat-top bean profile, on the wound healing process of the earthworm. Effective outcome was assimilated through examining the macroscopic, histological, and molecular changes on the irradiated posterior-segment of excised-earthworms with respect to controls. Three successive treatments, one every 24 hours, were concluded as sufficient to promote the wound healing, by effects on muscular and blood vessel contraction, decrement of bacteria load, reduction of inflammatory processes and tissue degeneration. D. veneta was demonstrated to be a reliable experimental organism that meets well the 3Rs principles and the National Science Foundation statement. Through their genetic and evolutionary peculiarity, comparable to those of scientifically accredited models, D. veneta allows the effect of laser therapies by multidisciplinary methods, at various degree of complexity and costs to be investigated

    Intraoperative Guidance Using Hyperspectral Imaging: A Review for Surgeons.

    Get PDF
    Hyperspectral imaging (HSI) is a novel optical imaging modality, which has recently found diverse applications in the medical field. HSI is a hybrid imaging modality, combining a digital photographic camera with a spectrographic unit, and it allows for a contactless and non-destructive biochemical analysis of living tissue. HSI provides quantitative and qualitative information of the tissue composition at molecular level in a contrast-free manner, hence making it possible to objectively discriminate between different tissue types and between healthy and pathological tissue. Over the last two decades, HSI has been increasingly used in the medical field, and only recently it has found an application in the operating room. In the last few years, several research groups have used this imaging modality as an intraoperative guidance tool within different surgical disciplines. Despite its great potential, HSI still remains far from being routinely used in the daily surgical practice, since it is still largely unknown to most of the surgical community. The aim of this study is to provide clinical surgeons with an overview of the capabilities, current limitations, and future directions of HSI for intraoperative guidance
    corecore