837 research outputs found

    Aboard the Wrong Ship in the Right Books: Doris Miller and Historical Accuracy

    Get PDF

    CLU

    Get PDF
    There’s someone within me surfacing, a person who’s really me and not really, someone who I could be or could’ve been, a fragment that was once familiar but now distanced. I am a window to look through, and he is within, guiding me towards an essence. I hug, he stings, I bite, he mocks, his demand for celebration, admiration, and awe for what’s hidden is frightening, but he is with me. Protons erratically arranging, quarks and neutrinos forming into images. It feels violent, sporadic, crawling beneath surfaces, flashing little lights, little windows into other worlds. I want to step around it, jump over it, grab it by its shoulders and scream, but I have to be careful, because Clu is watching. I walk a big road, it’s the hair, the legs, without it, I am me, after so many times, this is it, the thing, me, in the looking glass looking at myself, never seeing this of myself, it’s who I am, what I’ve known, even without it, the pain, the change, he isn’t a body yet he touches me, he isn’t a mind yet he speaks to me, in the air is a found thing, on the doorstep of everyone, a baby waiting to be picked up. He’s under the bed, over the river, beside me in the deep water, as close to me as my skin, the spit in my mouth, the marrow in my bones, he knows what he wants and doesn’t want, I fear what he fears, but he knows to go towards it. Clu is what my parents were going to name me before they chose Pierce. I imagine he is with me as a spirit, guiding me towards an intensity, a meanness, the viscera of confrontation

    Starch based coatings with thyme essential oil for fruit preservation

    Full text link
    Tesis por compendio[ES] En esta Tesis, se han analizado diferentes estrategias para adaptar las formulaciones de almidón con el fin de obtener recubrimientos útiles en la conservación poscosecha de frutas. El almidón se sustituyó parcialmente por gomas de origen microbiano (xantano, gelano y pululano) para mejorar las propiedades funcionales de las películas. La adición de gelano a la matriz de almidón, redujo su capacidad de adsorción de agua y la permeabilidad al vapor de agua y oxígeno. Tuvo un efecto positivo en las propiedades mecánicas, mejorando su resistencia a la rotura y previniendo la retrogradación. La goma xantana aumentó la resistencia a la rotura de las películas de almidón, pero no redujo su capacidad de adsorción de agua y la permeabilidad al vapor de agua. La sustitución del almidón por un 10 o 20% de gelano, podría ser una buena estrategia para obtener películas con propiedades más adecuadas con fines de envasado/recubrimiento de alimentos. Se analizaron películas mezcla de almidón-gelano con aceite esencial de tomillo (EO), con el objetivo de proporcionar actividad antifúngica a las formulaciones. El aceite se incorporó mediante emulsificación directa o encapsulado en liposomas de lecitina. Las películas mostraron un efecto antifúngico en las pruebas in vitro contra A. alternata y B. cinerea. La encapsulación del EO promovió una mayor retención del aceite, mejorando su actividad antifúngica, siendo éstas más efectivas contra B. cinerea que contra A. alternata. Una mayor proporción de almidón en el film dio lugar a mayor crecimiento fúngico a baja concentración del compuesto activo. Todas las películas exhibieron alta capacidad de barrera al oxígeno. La lecitina mejoró la capacidad de barrera al vapor de agua y redujo la rigidez, la resistencia a la rotura y la extensibilidad. Las películas con EO encapsulado, con una proporción de almidón-gelano de 8:2, fueron las más efectivas para controlar el crecimiento fúngico. Para aplicar las formulaciones de almidón-gelano como recubrimientos, se analizaron las propiedades superficiales de distintas frutas (manzana, tomate y caqui), y el coeficiente extensibilidad de las formulaciones sobre la superficie de la frutas, en función de la concentración de Tween 85. Las pieles de las frutas evaluadas se comportaron como superficies de baja energía. La adición de Tween 85 a las muestras sin EO, tuvo un efecto positivo en el ángulo de contacto y la tensión superficial. Sin embargo, cuando contenían EO, emulsionado o encapsulado en lecitina, el surfactante ejerció un efecto negativo en estas propiedades, dependiendo de su concentración. Las formulaciones con EO, emulsionado o encapsulado, no requirieron surfactante para mejorar su extensibilidad, mientras que la adición de Tween 85 a una concentración de 5x104 mg/L, mejoró notablemente esta propiedad en formulaciones S:G sin EO. Recubrimientos a base de almidón-gelano, con o sin EO emulsionado o encapsulado en liposomas de lecitina, fueron aplicados en manzanas y caquis. Los recubrimientos no redujeron la pérdida de peso en las manzanas, pero evitaron la pérdida de agua en los caquis. No se observó un efecto significativo de los recubrimientos en las tasas de respiración y el cociente de respiración de los caquis, mientras que estos parámetros aumentaron en manzanas. En los ensayos in vivo, los recubrimientos sin lecitina redujeron la incidencia y severidad de la mancha negra por A. alternata en caquis, y la severidad del moho gris por B. cinerea en manzanas. A pesar de su acción antifúngica in vitro, el EO no ejerció un efecto antifúngico adicional en la fruta. Esto podría explicarse por las interacciones particulares entre los componentes del recubrimiento, la superficie de la fruta y el patógeno. Los recubrimientos a base de almidón-gelano sin lecitina ni EO podrían aplicarse en caquis para controlar la pérdida de peso y reducir la incidencia de A. alternata.[CA] En esta Tesi, s'han analitzat diferents estratègies per a adaptar les formulacions de midó a fi d'obtenir recobriments útils per a la conservació postcollita de fruites. El midó es va substituir parcialment per gomes d'origen microbià (xantano, gelano i pululano) per a millorar les propietats funcionals de les pel¿lícules. L'addició de gelano a les pel¿lícules de midó, va reduir la seua capacitat d'adsorció d'aigua. També va tindre un efecte positiu en les propietats mecàniques, i va millorar la seua resistència a la ruptura i va prevenir els fenòmens de retrogradació. La goma de xantano també va augmentar la resistència a la ruptura de les pel¿lícules de midó, però no va reduir la seua capacitat d'adsorció d'aigua i la permeabilitat al vapor d'aigua. La substitució del midó per un 10 o 20% de gelano, podria ser una bona estratègia per a obtenir pel¿lícules amb propietats més adequades per al envasat/recobriment d'aliments. S'analitzaren les pel¿lícules mescla de midó-gelano amb oli essencial de timó (EO), amb l'objectiu de proporcionar activitat antifúngica a les formulacions. L'oli es va incorporar mitjançant emulsificació directa o encapsulat en liposomes de lecitina. Estes pel¿lícules van mostrar un efecte antifúngic en les proves in vitro contra A. alternata i B. cinerea. L'encapsulació de l'EO en els liposomes de lecitina va promoure una major retenció de l'oli i va millorar la seua activitat antifúngica, sent estes més efectives contra B. cinerea que contra A. alternata. En les formulacions amb una major proporció de midó amb baix contingut en compost actiu va haver un major creixement fúngic. Totes les pel¿lícules van exhibir alta capacitat de barrera a l'oxigen. La presència de lecitina va millorar la capacitat de barrera al vapor d'aigua i va reduir la rigidesa, la resistència a la ruptura i l'extensibilitat. Les pel¿lícules amb EO encapsulat, amb una proporció de midó-gelano 8: 2, van ser les més efectives per a controlar el creixement fúngic. Amb l'objectiu d'aplicar les formulacions de midó-gelano com a recobriments, es van analitzar les propietats superficials de distintes fruites (poma, tomaca i caqui), i el coeficient d'extensibilitat d'estes formulacions sobre la superfície de la fruita, en funció de la concentració de Tween 85. Les pells de les fruites avaluades es van comportar com a superfícies de baixa energia. L'addició de Tween 85 a les formulacions sense EO, va tenir un efecte positiu en els angles de contacte i la tensió superficial. En presència de l'EO, emulsionat o encapsulat en liposomes de lecitina, el tensioactiu va exercir un efecte negatiu en estos valors, depenent de la seua concentració. Els recobriments amb EO, emulsionat o encapsulat, no van requerir tensioactiu per a millorar la seua extensibilitat, mentre que l'addició de Tween 85 a una concentració de 5x104 mg/L, va millorar notablement esta propietat en les formulacions sense EO. Recobriments a base de midó-gelano, amb o sense l'agregat d'EO emulsionat o encapsulat en liposomes, van ser aplicats en pomes i caquis.. Els recobriments no van reduir la pèrdua de pes en les pomes, però van evitar la pèrdua d'aigua en els caquis. No es va observar un efecte significatiu dels recobriments en les taxes de respiració i el quocient de respiració dels caquis, mentre que les taxes i el quocient de respiració van augmentar en les pomes. En els assajos in vivo, els recobriments sense lecitina van reduir la incidència i severitat de la taca negra per A. alternata en els caquis, i la severitat de la floridura grisa per B. cinerea en les pomes. No obstant això, la incorporació de l'EO no va exercir un efecte antifúngic addicional en la fruita. Açò podria explicar-se per les interaccions particulars entre els components del recobriment, la superfície de la fruita i el patogen. Els recobriments a base de midó-gelano sense lecitina o EO de timó podrien aplicar-se en caqui[EN] In this Thesis, different strategies have been analysed to tailor starch formulations for the purposes of obtaining useful coatings in postharvest fruit preservation. Starch was partially substituted by microbial gums (xanthan, gellan, and pullulan) in order to improve film functional properties. Moisture sorption capacity and water vapour and oxygen permeability were reduced by the presence of gellan gum in the starch films. It also had a positive effect on the tensile properties, enhancing the films' strength and resistance to break and preventing retrogradation phenomena. Xanthan gum increased the tensile strength of the starch films, but did not reduce their water sorption capacity and water vapour permeability. Functional properties were not notably improved by the addition of pullulan. Then, 10 and 20 % starch could be substituted by gellan gum to obtain films with more adequate properties for food packaging/coating purposes. Starch-gellan blend films containing thyme essential oil (EO) were also studied in order to provide antifungal activity to the formulations. This was incorporated either by direct emulsification or encapsulated in lecithin liposomes. These films exhibited antifungal effect in in vitro tests against A. alternata and B. cinerea. The encapsulation of the EO in lecithin liposomes allowed for greater EO retention in the films, enhancing their antifungal activity, which were more effective against B. cinerea than against A. alternata. The antifungal action was slightly affected by the polymer matrix composition. Thus, the greatest starch ratio enhanced the fungal growth when the content of the active compound was low. All the films exhibited high oxygen barrier capacity. The presence of lecithin enhanced their water vapour barrier capacity and reduced the film stiffness, resistance to break and extensibility. The films with lecithin-encapsulated EO, with a starch-gellan ratio of 8:2, were the most effective at controlling fungal growth. In order to apply these starch-gellan formulations as fruit coatings, the surface properties of apple, tomato and persimmon, and the spreadability coefficient of these liquid formulations on the fruit surface, were analysed as a function of the concentration of Tween 85, as surfactant. The fruit skins behaved as low-energy surfaces. The values of the contact angles and surface tension of EO-free formulations were positively influenced by the addition of Tween 85. However, in the presence of emulsified or lecithin-encapsulated thyme EO, the surfactant exerted a negative effect, depending on its concentration. Coating-forming systems containing emulsified or encapsulated EO did not require surfactant to improve their already good spreadability, while Tween 85 at 5x104 mg/L notably improved this property in EO-free formulations. Starch-gellan coatings, containing or not emulsified or lecithin-encapsulated EO, were applied on apples and persimmons. Coatings did not reduce the weight loss in apples, but they prevented water loss in persimmons. In contrast, no significant effect of the coatings was observed on respiration rates and respiration quotient of persimmons, whereas they increased the respiration rates and quotient in apples. Coatings did not affect the changes in fruit firmness either in apples or persimmons. In the in vivo assays, the coatings without lecithin reduced the incidence and severity of black spot caused by A. alternata in persimmons, and the severity of grey mould caused by B. cinerea in apples. The incorporation of EO did not exert an additional antifungal effect on the fruit and seemed to exert a negative effect on some other fruit quality attributes. This could be explained by the particular interactions of the coating components, fruit surface and pathogen. Starch-gellan coatings without lecithin or thyme EO could be used in persimmons to control weight loss and reduce the incidence of infections caused by A. alternata.This work has been founded by the “Ministerio de Economía y Competitividad” of Spain, through the Project AGL2016-76699-R and the “Conselleria de Educación, Investigación, Cultura y Deporte de la Generalitat Valenciana” trough the Santiago Grisolía grant GRISOLIA/2015/001.Sapper, MI. (2019). Starch based coatings with thyme essential oil for fruit preservation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124342TESISCompendi

    Rulemaking by Ambush: How Prohibitions Against It Became Dead Letters

    Get PDF

    Medida Provisória 881: The Empowerment Of Brazilian Entrepreneurship and The Hope For Less Bureaucracy In Business

    Get PDF
    With the assumption of Jair Bolsonaro to the Presidency of Brazil the new president is looking to overhaul key com-ponents of the economy. Influenced by conservative thinker Olavo de Carvalho and supported by a team of like-minded free-market aficionados such as Paulo Guedes and Paulo Uebel, President Bolsonaro has issued an executive medida provisória to stimulate business development in Brazil by eliminating costs and bureaucracy for Brazilian businesses. The Medida Provisória 881 is already being considered a hallmark of legislation that is quintessential for the economy and the nation. This historic bill is often referred to as an “economic bill of rights”

    Starch-Based Coatings for Preservation of Fruits and Vegetables

    Full text link
    [EN] Considerable research has focused on the control of the physiological activity of fruits and vegetables in postharvest conditions as well as microbial decay. The use of edible coatings (ECs) carrying active compounds (e.g., antimicrobials) represents an alternative preservation technology since they can modify the internal gas composition by creating a modified atmosphere through the regulation of the gas exchange (oxygen, carbon dioxide, volatiles) while also limiting water transfer. Of the edible polymers able to form coating films, starch exhibits several advantages, such as its ready availability, low cost and good filmogenic capacity, forming colourless and tasteless films with high oxygen barrier capacity. Nevertheless, starch films are highly water sensitive and exhibit limited water vapour barrier properties and mechanical resistance. Different compounds, such as plasticizers, surfactants, lipids or other polymers, have been incorporated to improve the functional properties of starch-based films/coatings. This paper reviews the starch-based ECs used to preserve the main properties of fruits and vegetables in postharvest conditions as well as the different factors affecting the coating efficiency, such as surface properties or incorporation of antifungal compounds. The great variability in the plant products requires specific studies to optimize the formulation of coating forming products.The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the projects and AGL2016-76699-R and RTA2015-00037-C02. Mayra Sapper thanks the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Comunitat Valenciana for the Santiago Grisolia grant GRISOLIA/2015/001.Sapper, MI.; Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings. 8(5). https://doi.org/10.3390/coatings8050152S85Palou, L., Valencia-Chamorro, S., & Pérez-Gago, M. (2015). Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings, 5(4), 962-986. doi:10.3390/coatings5040962Park, H. J. (1999). Development of advanced edible coatings for fruits. Trends in Food Science & Technology, 10(8), 254-260. doi:10.1016/s0924-2244(00)00003-0Karaca, H., Pérez-Gago, M. B., Taberner, V., & Palou, L. (2014). Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose–lipid composite edible coatings for plums. International Journal of Food Microbiology, 179, 72-79. doi:10.1016/j.ijfoodmicro.2014.03.027Fagundes, C., Palou, L., Monteiro, A. R., & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 193, 249-257. doi:10.1016/j.scienta.2015.07.027Raybaudi-Massilia, R., Mosqueda-Melgar, J., Soliva-Fortuny, R., & Martín-Belloso, O. (2016). Combinational Edible Antimicrobial Films and Coatings. Antimicrobial Food Packaging, 633-646. doi:10.1016/b978-0-12-800723-5.00052-8Mariniello, L., Giosafatto, C. V. L., Di Pierro, P., Sorrentino, A., & Porta, R. (2010). Swelling, Mechanical, and Barrier Properties of Albedo-Based Films Prepared in the Presence of Phaseolin Cross-Linked or Not by Transglutaminase. Biomacromolecules, 11(9), 2394-2398. doi:10.1021/bm100566jKang, H.-J., Kim, S.-J., You, Y.-S., Lacroix, M., & Han, J. (2013). Inhibitory effect of soy protein coating formulations on walnut (Juglans regia L.) kernels against lipid oxidation. LWT - Food Science and Technology, 51(1), 393-396. doi:10.1016/j.lwt.2012.10.019Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2010). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. doi:10.1007/s11947-010-0434-1Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095-1107. doi:10.1016/j.ijbiomac.2017.11.097Mehyar, G. F., Al-Qadiri, H. M., & Swanson, B. G. (2012). Edible Coatings and Retention of Potassium Sorbate on Apples, Tomatoes and Cucumbers to Improve Antifungal Activity During Refrigerated Storage. Journal of Food Processing and Preservation, 38(1), 175-182. doi:10.1111/j.1745-4549.2012.00762.xLuchese, C. L., Spada, J. C., & Tessaro, I. C. (2017). Starch content affects physicochemical properties of corn and cassava starch-based films. Industrial Crops and Products, 109, 619-626. doi:10.1016/j.indcrop.2017.09.020Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148. doi:10.1016/j.foodhyd.2016.09.009Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering, 110(2), 208-213. doi:10.1016/j.jfoodeng.2011.05.034MILLER, K. S., UPADHYAYA, S. K., & KROCHTA, J. M. (2008). Permeability of d-Limonene in Whey Protein Films. Journal of Food Science, 63(2), 244-247. doi:10.1111/j.1365-2621.1998.tb15718.xFalguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. doi:10.1016/j.tifs.2011.02.004Lin, D., & Zhao, Y. (2007). Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. doi:10.1111/j.1541-4337.2007.00018.xRojas-Graü, M. A., Tapia, M. S., Rodríguez, F. J., Carmona, A. J., & Martin-Belloso, O. (2007). Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 21(1), 118-127. doi:10.1016/j.foodhyd.2006.03.001Acevedo-Fani, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2017). Nanoemulsions as edible coatings. Current Opinion in Food Science, 15, 43-49. doi:10.1016/j.cofs.2017.06.002ZISMAN, W. A. (1964). Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. Contact Angle, Wettability, and Adhesion, 1-51. doi:10.1021/ba-1964-0043.ch001Dann, J. . (1970). Forces involved in the adhesive process. Journal of Colloid and Interface Science, 32(2), 302-320. doi:10.1016/0021-9797(70)90054-8Lima, Á. M., Cerqueira, M. A., Souza, B. W. S., Santos, E. C. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2010). New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits – Influence on fruits gas transfer rate. Journal of Food Engineering, 97(1), 101-109. doi:10.1016/j.jfoodeng.2009.09.021Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95(3), 379-385. doi:10.1016/j.jfoodeng.2009.05.020Cerqueira, M. A., Lima, Á. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 94(3-4), 372-378. doi:10.1016/j.jfoodeng.2009.04.003Casariego, A., Souza, B. W. S., Vicente, A. A., Teixeira, J. A., Cruz, L., & Díaz, R. (2008). Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocolloids, 22(8), 1452-1459. doi:10.1016/j.foodhyd.2007.09.010Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70. doi:10.1016/j.postharvbio.2006.11.015Choi, W. Y., Park, H. J., Ahn, D. J., Lee, J., & Lee, C. Y. (2002). Wettability of Chitosan Coating Solution on’Fuji’ Apple Skin. Journal of Food Science, 67(7), 2668-2672. doi:10.1111/j.1365-2621.2002.tb08796.xHershko, V., & Nussinovitch, A. (1998). The Behavior of Hydrocolloid Coatings on Vegetative Materials. Biotechnology Progress, 14(5), 756-765. doi:10.1021/bp980075vHagenmaier, R. D., & Baker, R. A. (1993). Reduction in gas exchange of citrus fruit by wax coatings. Journal of Agricultural and Food Chemistry, 41(2), 283-287. doi:10.1021/jf00026a029Versino, F., Lopez, O. V., Garcia, M. A., & Zaritzky, N. E. (2016). Starch-based films and food coatings: An overview. Starch - Stärke, 68(11-12), 1026-1037. doi:10.1002/star.201600095Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. doi:10.1016/j.foodhyd.2015.03.015Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769. doi:10.1016/j.foodres.2009.02.026Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075García, M. A., Martino, M. N., & Zaritzky, N. E. (1998). Plasticized Starch-Based Coatings To Improve Strawberry (Fragaria×Ananassa) Quality and Stability. Journal of Agricultural and Food Chemistry, 46(9), 3758-3767. doi:10.1021/jf980014cSaberi, B., Golding, J. B., Marques, J. R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biology and Technology, 137, 9-20. doi:10.1016/j.postharvbio.2017.11.003Cháfer, M., Sánchez-González, L., González-Martínez, C., & Chiralt, A. (2012). Fungal Decay and Shelf Life of Oranges Coated With Chitosan and Bergamot, Thyme, and Tea Tree Essential Oils. Journal of Food Science, 77(8), E182-E187. doi:10.1111/j.1750-3841.2012.02827.xNawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato ( Solanum lycopersicum ) fruit. International Journal of Biological Macromolecules, 103, 581-586. doi:10.1016/j.ijbiomac.2017.05.057Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan– Aloe vera coating on postharvest quality of blueberry ( Vaccinium corymbosum ) fruit. Postharvest Biology and Technology, 116, 88-97. doi:10.1016/j.postharvbio.2016.01.011Sabbah, M., Di Pierro, P., Giosafatto, C., Esposito, M., Mariniello, L., Regalado-Gonzales, C., & Porta, R. (2017). Plasticizing Effects of Polyamines in Protein-Based Films. International Journal of Molecular Sciences, 18(5), 1026. doi:10.3390/ijms18051026Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372-379. doi:10.1016/j.jfoodeng.2011.11.019Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006Sagnelli, D., Hooshmand, K., Kemmer, G., Kirkensgaard, J., Mortensen, K., Giosafatto, C., … Blennow, A. (2017). Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative. International Journal of Molecular Sciences, 18(10), 2075. doi:10.3390/ijms18102075Romani, V. P., Hernández, C. P., & Martins, V. G. (2018). Pink pepper phenolic compounds incorporation in starch/protein blends and its potential to inhibit apple browning. Food Packaging and Shelf Life, 15, 151-158. doi:10.1016/j.fpsl.2018.01.003Chiumarelli, M., Pereira, L. M., Ferrari, C. C., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2010). Cassava Starch Coating and Citric Acid to Preserve Quality Parameters of Fresh-Cut «Tommy Atkins» Mango. Journal of Food Science, 75(5), E297-E304. doi:10.1111/j.1750-3841.2010.01636.xOrtega-Toro, R., Collazo-Bigliardi, S., Roselló, J., Santamarina, P., & Chiralt, A. (2017). Antifungal starch-based edible films containing Aloe vera. Food Hydrocolloids, 72, 1-10. doi:10.1016/j.foodhyd.2017.05.023Botelho, L. N. S., Rocha, D. A., Braga, M. A., Silva, A., & de Abreu, C. M. P. (2016). Quality of guava cv. ‘Pedro Sato’ treated with cassava starch and cinnamon essential oil. Scientia Horticulturae, 209, 214-220. doi:10.1016/j.scienta.2016.06.012De Aquino, A. B., Blank, A. F., & de Aquino Santana, L. C. L. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry, 171, 108-116. doi:10.1016/j.foodchem.2014.08.077Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64. doi:10.1016/j.postharvbio.2015.05.015Razak, A. S., & Lazim, A. M. (2015). Starch-based edible film with gum arabic for fruits coating. doi:10.1063/1.4931299Das, D. K., Dutta, H., & Mahanta, C. L. (2013). Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT - Food Science and Technology, 50(1), 272-278. doi:10.1016/j.lwt.2012.05.018Garcia, L. C., Pereira, L. M., de Luca Sarantópoulos, C. I. G., & Hubinger, M. D. (2010). Selection of an Edible Starch Coating for Minimally Processed Strawberry. Food and Bioprocess Technology, 3(6), 834-842. doi:10.1007/s11947-009-0313-9Boubaker, H., Karim, H., El Hamdaoui, A., Msanda, F., Leach, D., Bombarda, I., … Ait Ben Aoumar, A. (2016). Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Industrial Crops and Products, 86, 95-101. doi:10.1016/j.indcrop.2016.03.036Junqueira-Gonçalves, M. P., Alarcón, E., & Niranjan, K. (2013). Development of antifungal packaging for berries extruded from recycled PET. Food Control, 33(2), 455-460. doi:10.1016/j.foodcont.2013.03.031Tesfay, S. Z., Magwaza, L. S., Mbili, N., & Mditshwa, A. (2017). Carboxyl methylcellulose (CMC) containing moringa plant extracts as new postharvest organic edible coating for Avocado ( Persea americana Mill.) fruit. Scientia Horticulturae, 226, 201-207. doi:10.1016/j.scienta.2017.08.047Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002Valencia-Chamorro, S. A., Pérez-Gago, M. B., Del Río, M. A., & Palou, L. (2010). Effect of Antifungal Hydroxypropyl Methylcellulose-Lipid Edible Composite Coatings on Penicillium Decay Development and Postharvest Quality of Cold-Stored «Ortanique» Mandarins. Journal of Food Science, 75(8), S418-S426. doi:10.1111/j.1750-3841.2010.01801.xAli, A., Noh, N. M., & Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and Shelf Life, 3, 56-61. doi:10.1016/j.fpsl.2014.10.003Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009Marín, A., Atarés, L., & Chiralt, A. (2017). Improving function of biocontrol agents incorporated in antifungal fruit coatings: a review. Biocontrol Science and Technology, 27(10), 1220-1241. doi:10.1080/09583157.2017.1390068Ruiz-Moyano, S., Martín, A., Villalobos, M. C., Calle, A., Serradilla, M. J., Córdoba, M. G., & Hernández, A. (2016). Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiology, 57, 45-53. doi:10.1016/j.fm.2016.01.003Marín, A., Cháfer, M., Atarés, L., Chiralt, A., Torres, R., Usall, J., & Teixidó, N. (2016). Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biological Control, 96, 108-119. doi:10.1016/j.biocontrol.2016.02.012Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Stability of biocontrol products carrying Candida sake CPA-1 in starch derivatives as a function of water activity. Biocontrol Science and Technology, 27(2), 268-287. doi:10.1080/09583157.2017.1279587Noshirvani, N., Ghanbarzadeh, B., Gardrat, C., Rezaei, M. R., Hashemi, M., Le Coz, C., & Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70, 36-45. doi:10.1016/j.foodhyd.2017.03.015Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003Acosta, S., Chiralt, A., Santamarina, P., Rosello, J., González-Martínez, C., & Cháfer, M. (2016). Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocolloids, 61, 233-240. doi:10.1016/j.foodhyd.2016.05.008Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1-2), 66-72. doi:10.1016/j.ijfoodmicro.2011.10.017Wang, Y., Li, Y., Xu, W., Zheng, X., Zhang, X., Abdelhai, M. H., … Zhang, H. (2018). Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved. Biological Control, 121, 14-22. doi:10.1016/j.biocontrol.2018.02.001De Paiva, E., Serradilla, M. J., Ruiz-Moyano, S., Córdoba, M. G., Villalobos, M. C., Casquete, R., & Hernández, A. (2017). Combined effect of antagonistic yeast and modified atmosphere to control Penicillium expansum infection in sweet cherries cv. Ambrunés. International Journal of Food Microbiology, 241, 276-282. doi:10.1016/j.ijfoodmicro.2016.10.033Zhou, Y., Zhang, L., & Zeng, K. (2016). Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biological Control, 96, 39-47. doi:10.1016/j.biocontrol.2016.02.001Gava, C. A. T., & Pinto, J. M. (2016). Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biological Control, 97, 13-20. doi:10.1016/j.biocontrol.2016.02.010Zeng, L., Yu, C., Fu, D., Lu, H., Zhu, R., Lu, L., … Yu, T. (2015). Improvement in the effectiveness of Cryptococcus laurentii to control postharvest blue mold of pear by its culture in β-glucan amended nutrient broth. Postharvest Biology and Technology, 104, 26-32. doi:10.1016/j.postharvbio.2015.03.005Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47, 85-92. doi:10.1016/j.fm.2014.11.01

    Rapid Exploration of Topological Band Structures using Deep Learning

    No full text
    The design of periodic nanostructures allows to tailor the transport of photons, phonons, and matter waves for specific applications. Recent years have seen a further expansion of this field by engineering topological properties. However, what is missing currently are efficient ways to rapidly explore and optimize band structures and to classify their topological characteristics, for arbitrary unit cell geometries. In this work, we show how deep learning can address this challenge. We introduce an approach where a neural network first maps the geometry to a tight-binding model. This allows us to exploit any underlying space group and predict the symmetries of Bloch waves. We demonstrate how that helps to rapidly categorize a large set of geometries in terms of their band representations, identifying designs for fragile topologies. Engineering of domain walls and optimization are also accelerated by orders of magnitude. The approach is general enough to permit future applications to the geometry discovery in other classes of materials (e.g. active and nonlinear metamaterials)
    corecore