10 research outputs found

    Metagenomic insight into precipitation processes in microbial communities from salar de Atacama

    Get PDF
    The Salar de Atacama is one of the Earth’s largest evaporite basins (ca. 3,000 km2). Within this large area, numerous hypersaline lakes can be found. These lakes are hotspots for microbial diversity, and diverse structures with associated microorganisms have been reported, including microbial mats, microbialites and endoevaporites. In this work, we aim to identify functional differences in the microbiota from these systems, using as models a mat from Brava lake, a microbialite from Chaxas and an endoevaporite from Barros Negros. Metagenomic DNA was extracted from these samples, and sequenced with Illumina technology. The datasets generated allowed to characterize the microbial communities both taxonomically and functionally.The carbonate-rich mats and microbialites are dominated by Proteobacteria, and within this phylum the most abundant classes are Alphaproteobacteria and Gammaproteobacteria. Other important phyla include Bacteroidetes, Cyanobacteria, and Actinobacteria. In the endoevaporites, the phyla are more evenly distributed, being Proteobacteria, Bacteroidetes, and Euryarchaeota similarly abundant, with Cyanobacteria and Actinobacteria also present. At the family level, the mat is the most diverse and the endoevaporite is the least diverse. This is also observed at the function level, with more pathways annotated in Brava. However, the main functional roles present in the three communities are similar, with Cyanobacteria being the main primary producers, involved in photosynthesis and nitrogen fixing, Alphaproteobacteria involved in anoxygenic photosynthesis, and Deltaproteobacteria involved in sulfur cycling. This work starts the exploration of the microbial influence on the formation of different macrostructures harboring microbial ecosystems in extreme environments from the Central Andes region. Certain taxa present only in the more lithified communities, and with metabolic pathways promoting precipitation might be particularly involved in the lithification process.Fil: Marcelino, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Kurth, Daniel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaXVII Congreso Argentino de Microbiología GeneralLos CocosArgentinaSociedad Argentina de Microbiología Genera

    Los oncoides de las quínoas: Un nuevo depósito de microbialitos en el salar de antofalla (Catamarca, Argentina).

    Get PDF
    The Salar de Antofalla (salt flat) is located in the Puna region of Catamarca, in northern Argentina. In this paper we report and provide the first descriptive data of Las Quínoas, a modern system of oncoids located in the western margin of the salt flat. Oncoids were studied by insitu logging, polished and thin sections analysis. In addition, the 16s rRNA genes of microbial mats associated with these oncoids were amplified and sequenced to characterize the microbial biodiversity. Oncoids present discoidal to subrounded morphologies and sizes up to 15 cm in diameter. They are scattered along channels, which originate from the groundwater springs of a wetland and enter the salt flat. Its macrostructure is concentric and composed by three zones: 1. A nucleus zone built by clastic material in a carbonate matrix. 2. A well-laminated zone around the nucleus that shows two types of mesostructures: concentrically stacked spheroids (SS-C) and randomly stacked hemispheroids (SS-R), both showing an alternation of dense and dark micritic laminae with light micritic to microsparitic laminae. 3. A poorly-laminated zone, in the outermost sector of oncoids, with two types of mesostructures too: a laminated mesostructure composed also of an alternation of dense and dark micritic laminae with light micritic to microsparitic laminae, and a non-laminated mesostructure composed of agglomerated and cemented clastic material within a calcareous matrix (wackestones-packstones). Regarding the microbial diversity, the analyzed oncoids in this work are mainly inhabited by Proteobacteria (ca. 37.5%), Bacteroidetes (ca. 25.0%), and in less proportion Planctomycetes, Actinobacteria and Cyanobacteria.El salar de Antofalla se encuentra en la región de la Puna de Catamarca, en el norte de Argentina. En este artículo informamos y proporcionamos los primeros datos descriptivos de Las Quínoas, un sistema moderno de oncoides ubicado en el margen occidental de este salar. Ellos se estudiaron mediante registro in situ, análisis de secciones pulidas y delgadas. Además, los genes de ARNr 16s de tapices microbianos asociados con estos oncoides se amplificaron y secuenciaron para caracterizar la biodiversidad microbiana. Los oncoides presentan morfologías discoidales a subredondeadas y tamaños de hasta 15 cm de diámetro. Se encuentran dispersos a lo largo de canales, que se originan de las surgentes de agua de una vega y entran al salar. Su macroestructura es concéntrica y está compuesta por tres zonas: 1. Una zona de núcleo construida por material clástico en una matriz de carbonato. 2. Una zona bien laminada alrededor del núcleo que muestra dos tipos de mesoestructuras: esferoides concéntricamente apilados (SS-C) y hemisferoides apilados aleatoriamente (SS-R), ambos con una alternancia de láminas micríticas densas y oscuras con micríticas claras a microesparíticas. 3. Una zona pobremente laminada, en el sector más externo de los oncoides, también con dos tipos de mesoestructuras: una mesoestructura laminada compuesta por la alternancia de láminas micríticas densas y oscuras con láminas micríticas claras a microesparíticas, y una mesoestructura no laminada compuesta de material clástico aglomerado y cementado dentro de una matriz calcárea (wackestones-packstones). En cuanto a la diversidad microbiana, los oncoides analizados en este trabajo están habitados principalmente por Proteobacterias (ca. 37,5%), Bacteroidetes (ca. 25,0%), y en menor proporción Planctomicetes, Actinobacterias y Cianobacterias.Fil: Villafañe, Patricio Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Gómez, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lencina, Agustina Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Catamarca. Universidad Nacional de Catamarca. Centro de Investigaciones y Transferencia de Catamarca; ArgentinaFil: Soria, Mariana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Assessment of the plasmidome of an extremophilic microbial community from the Diamante Lake, Argentina

    Get PDF
    Diamante Lake located at 4589 m.a.s.l. in the Andean Puna constitutes an extreme environment. It is exposed to multiple extreme conditions such as an unusually high concentration of arsenic (over 300 mg L−1) and low oxygen pressure. Microorganisms thriving in the lake display specific genotypes that facilitate survival, which include at least a multitude of plasmid-encoded resistance traits. Hence, the genetic information provided by the plasmids essentially contributes to understand adaptation to different stressors. Though plasmids from cultivable organisms have already been analyzed to the sequence level, the impact of the entire plasmid-borne genetic information on such microbial ecosystem is not known. This study aims at assessing the plasmidome from Diamante Lake, which facilitates the identification of potential hosts and prediction of gene functions as well as the ecological impact of mobile genetic elements. The deep-sequencing analysis revealed a large fraction of previously unknown DNA sequences of which the majority encoded putative proteins of unknown function. Remarkably, functions related to the oxidative stress response, DNA repair, as well as arsenic- and antibiotic resistances were annotated. Additionally, all necessary capacities related to plasmid replication, mobilization and maintenance were detected. Sequences characteristic for megaplasmids and other already known plasmid-associated genes were identified as well. The study highlights the potential of the deep-sequencing approach specifically targeting plasmid populations as it allows to evaluate the ecological impact of plasmids from (cultivable and non-cultivable) microorganisms, thereby contributing to the understanding of the distribution of resistance factors within an extremophilic microbial community.Fil: Perez, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Poehlein, Anja. Universität Göttingen; AlemaniaFil: Meinhardt, Friedhelm. Münster Universität; AlemaniaFil: Daniel, Rolf. Universität Göttingen; AlemaniaFil: Dib, Julian Rafael. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Conferencia internacional. Desafíos de la Investigación e innovación en tiempos de Covid-19

    Get PDF
    En 2018, Treinta y nueve estudiantes femeninas del X ciclo del periodo 2018-1 de la escuela de Psicología de una universidad particular del cono norte de Lima, ellas han descrito el romance de su personas cercanas a ellas. Se analizaron los 266 casos de parejas de enamorados estaban el rango de 17 a 25 años. El instrumento que se usó fue una CUESTIONARIO CUPIDO que es una escala nominal de conductas donde las estudiantes de psicología clasificaban los comportamientos en categorías preestablecidas, claramente definidas y mutuamente excluyentes. La conclusión más importante del estudio observacional fue que las parejas analizadas en un 64.4 % la mujer ero atrajo al varón y después el varón emo conectó con la mujer. También han observado otro estilo de romance cuando el varón ero atrajo a la mujer por su cuerpo atracción y después la mujer fue la que emo conectó con el varón y observaron este hecho en un 35.6 % de los casos

    Magnetic Resonance and Vibrational Spectroscopy and Imaging in Food Analysis

    No full text
    In the past two decades, there have been remarkable changes in the way we analyze the physical, chemical, and sensory properties of fresh and processed food products, with the progressive replacement of traditional wet analytical methods (destructive, laborious, time-consuming, and requiring the use of hazardous chemicals) with new, fast, non-destructive physical methods where the analysis is performed in a single step, after validation, and without the use of chemical reagents [...

    Analysis of co-regulated abundance of genes associated with arsenic and phosphate metabolism in Andean Microbial Ecosystems

    Get PDF
    Phosphate and arsenate are very similar compounds, and there is great interest in studying their relationship and their interaction with biological systems. Despite having no apparent biological function, specific genes regulate arsenic interaction with cells and can be located in regions of the genome called arsenic islands, where phosphate metabolism genes are also present. Although they are neighboring genes, the nature of their relationship and how they have been selected is still unknown.In this work, we analyzed the metagenomes of the four microbial ecosystems inhabiting hypersaline lakes of the Argentine Puna and the Atacama salt flat in Chile and have evaluated the presence and abundance of both arsenic and phosphate metabolism genes. The samples analyzed included microbialites, biofilms and microbial mats; all of them established under high arsenic concentrations, high UV radiation and high temperature fluctuation, among others.The results show great differences in the dispersion and abundance of genes related to both phosphate and arsenic metabolism in the analyzed samples. The main difference is given in the Diamante Lake, located in the crater of the Galan volcano characterized by being one of the lakes with the highest arsenic concentration (2.34 mM). Correlating genes abundance with the physicochemical parameters of the lakes studied, our results suggest that arsenic and phosphate metabolism are intricately co-regulated in environmental conditions.Fil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Valenzuela Diaz, Sandro. Universidad Andrés Bello; ChileFil: Kurth, Daniel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Contreras, Emanuel. Centro de Ecologia Aplocada Ltda; ChileFil: Meneses, Claudio. Center For Genome Regulation; ChileFil: Castro Nallar, Eduardo. Universidad Andrés Bello; ChileFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Phosphate-Arsenic Interactions in Halophilic Microorganisms of the Microbial Mat from Laguna Tebenquiche: from the Microenvironment to the Genomes

    No full text
    Arsenic (As) is a metalloid present in the earth’s crust and widely distributed in the environment. Due to its high concentrations in the Andean valleys and its chemical similarity with phosphorus (P), its biological role in Andean Microbial Ecosystems (AMEs) has begun to be studied. The AMEs are home to extremophilic microbial communities that form microbial mats, evaporites, and microbialites inhabiting Andean lakes, puquios, or salt flats. In this work, we characterize the biological role of As and the effect of phosphate in AMEs from the Laguna Tebenquiche (Atacama Desert, Chile). Using micro X-ray fluorescence, the distribution of As in microbial mat samples was mapped. Taxonomic and inferred functional profiles were obtained from enriched cultures of microbial mats incubated under As stress and different phosphate conditions. Additionally, representative microorganisms highly resistant to As and able to grow under low phosphate concentration were isolated and studied physiologically. Finally, the genomes of the isolated Salicola sp. and Halorubrum sp. were sequenced to analyze genes related to both phosphate metabolism and As resistance. The results revealed As as a key component of the microbial mat ecosystem: (i) As was distributed across all sections of the microbial mat and represented a significant weight percentage of the mat (0.17 %) in comparison with P (0.40%); (ii) Low phosphate concentration drastically changed the microbial community in microbial mat samples incubated under high salinity and high As concentrations; (iii) Archaea and Bacteria isolated from the microbial mat were highly resistant to arsenate (up to 500 mM), even under low phosphate concentration; (iv) The genomes of the two isolates were predicted to contain key genes in As metabolism (aioAB and arsC/acr3) and the genes predicted to encode the phosphate-specific transport operon (pstSCAB-phoU) are next to the arsC gene, suggesting a functional relationship between these two elements.Fil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Soria, Mariana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Durán Toro, V.. Universitat Bremen; AlemaniaFil: Wörmer, L.. Universitat Bremen; AlemaniaFil: Milucka, J.. Max Planck In­sti­tute For Mar­ine Mi­cro­bi­o­logy; AlemaniaFil: Castro Nallar, E.. Universidad Andrés Bello; ChileFil: Meneses, C.. Universidad Andrés Bello; ChileFil: Contreras, M.. Centro de Ecologia Aplocada Ltda; ChileFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes

    No full text
    The wetlands and salt flats of the Central Andes region are unique extreme environments as they are located in high-altitude saline deserts, largely influenced by volcanic activity. Environmental factors, such as ultraviolet (UV) radiation, arsenic content, high salinity, low dissolved oxygen content, extreme daily temperature fluctuation, and oligotrophic conditions, resemble the early Earth and potentially extraterrestrial conditions. The discovery of modern microbialites and microbial mats in the Central Andes during the past decade has increased the interest in this area as an early Earth analog. In this work, we review the current state of knowledge of Central Andes region environments found within lakes, small ponds or puquios, and salt flats of Argentina, Chile, and Bolivia, many of them harboring a diverse range of microbial communities that we have termed Andean Microbial Ecosystems (AMEs). We have integrated the data recovered from all the known AMEs and compared their biogeochemistry and microbial diversity to achieve a better understanding of them and, consequently, facilitate their protection.Centro de Investigaciones Geológica

    Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes

    No full text
    The wetlands and salt flats of the Central Andes region are unique extreme environments as they are located in high-altitude saline deserts, largely influenced by volcanic activity. Environmental factors, such as ultraviolet (UV) radiation, arsenic content, high salinity, low dissolved oxygen content, extreme daily temperature fluctuation, and oligotrophic conditions, resemble the early Earth and potentially extraterrestrial conditions. The discovery of modern microbialites and microbial mats in the Central Andes during the past decade has increased the interest in this area as an early Earth analog. In this work, we review the current state of knowledge of Central Andes region environments found within lakes, small ponds or puquios, and salt flats of Argentina, Chile, and Bolivia, many of them harboring a diverse range of microbial communities that we have termed Andean Microbial Ecosystems (AMEs). We have integrated the data recovered from all the known AMEs and compared their biogeochemistry and microbial diversity to achieve a better understanding of them and, consequently, facilitate their protection.Fil: Vignale, Federico Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Lencina, Agustina Inés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Stepanenko, Tatiana Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Soria, Mariana Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Saona Acuña, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Kurth, Daniel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Guzmán, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Foster, Jamie Susan. Universidad Mayor de San Simon Bolivia; BoliviaFil: Poiré, Daniel G.. University of Florida; Estados UnidosFil: Villafañe, Patricio Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Contreras, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentin

    Biological activity and specificity of Miridae-induced plant volatiles

    Full text link
    [EN] The ability of zoophytophagous predators to produce defensive plant responses due to their phytophagous behavior has been recently demonstrated. In the case of tomatoes, the mirids Nesidiocoris tenuis and Macrolophus pygmaeus are able to attract or repel pests and/or natural enemies in different ways. Nevertheless, the herbivore-induced plant volatiles (HIPVs) released by the phytophagy of both mirids, which are responsible for these behaviors, are unknown. In this work, the HIPVs produced by the plant feeding of N. tenuis and M. pygmaeus were characterized. In addition, the role of each HIPV in the repellence or attraction of two tomato pests, Bemisia tabaci and Tuta absoluta, and of the natural enemy Encarsia formosa was evaluated. Six green leaf volatiles (GLVs) plus methyl salicylate and octyl acetate clearly stood out as major differential peaks on the chromatogram in a directed analysis. The six GLV and methyl salicylate were repellent for B. tabaci and attractive to E. formosa, whereas they showed no effect on T. absoluta. Octyl acetate, which was significantly present only in the M. pygmaeus-punctured plants, was significantly attractive to T. absoluta, repellent to E. formosa and indifferent to B. tabaci. Unlike the remaining HIPVs, octyl acetate was emitted directly by M. pygmaeus and not by the plant. Our results showed that mirid herbivory could modulate the pest and natural plant enemy locations, since tomato plants release a blend of volatiles in response to this activity. These results could serve as a basis for future development of plant protection.The research leading to these results was funded by the Spanish Ministry of Economy and Competitiveness (AGL2014-55616-C3). The authors thank Javier Calvo (KOPPERT BS) for the supply of insects, and Sandra Fresquet and Virginia Pedroche for their technical assistance. MP-H was the recipient of a research fellowship from the INIA Spain (Subprogram DOC-INIA-CCAA). Analyses of volatile compounds were performed in the Metabolomics service facilities at IBMCP.Pérez-Hedo, M.; Granell Richart, A.; Rambla Nebot, JL.; Urbaneja Garcia, A. (2017). Biological activity and specificity of Miridae-induced plant volatiles. BioControl. 63(2):203-213. https://doi.org/10.1007/s10526-017-9854-4S203213632Abbas S, Pérez-Hedo M, Colazza S, Urbaneja A (2014) The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl 59:565–574Ardanuy A, Albajes R, Turlings TC (2016) Innate and learned prey-searching behavior in a generalist predator. J Chem Ecol 42:497–507Arnó J, Gabarra R, Liu TX, Simmons AM, Gerling D (2010) Natural enemies of Bemisia tabaci: predators and parasitoids. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 385–421Attygalle AB, Jham GN, Svatos A, Frighetto RTS, Ferrara FA, Vilela EF, Uchôa-Fernandes MA, Meinwald J (1996) 3E,8Z,11Z)-3,8,11-tetradecatrienyl acetate, major sex pheromone component of the tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae. Bioorg Med Chem 4:305–314Barnadas I, Gabarra R, Albajes R (1998) Predatory capacity of two mirid bugs preying on Bemisia tabaci. Entomol Exp Appl 86:215–219Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? BioControl 61:79–90Bukovinszky T, Gols R, Posthumus MA, Vet LE, van Lenteren JC (2005) Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellén). J Chem Ecol 31:461–480Calvo FJ, Bolckmans K, Stansly PA, Urbaneja A (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. BioControl 54:237–246Calvo FJ, Soriano J, Bolckmans K, Belda JE (2012) A successful method for whitefly and Tuta absoluta control in tomato. Evaluation after two years of application in practice. IOBC/WPRS Bull 80:237–244Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33:997–1012Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902Eubanks MD, Denno RF (1999) The ecological consequences of variation in plants and prey for an omnivorous insect. Ecology 80:1253–1266Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824Gillespie DR, Mcgregor RR (2000) The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecol Entomol 25:380–386Giunti G, Benelli G, Palmeri V, Canale A (2017) Bactrocera oleae-induced olive VOCs routing mate searching in Psyttalia concolor males: impact of associative learning. Bull Entomol Res. https://doi.org/10.1017/S0007485317000451James DG (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495Kappers IF, Aharoni A, van Herpen TW, Luckerhoff LL, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144Leitner M, Boland W, Mithöfer A (2005) Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytol 167:597–606Levi-Zada A, Sadowsky A, Dobrinin S, David M, Ticuchinski T, Fefer D, Greenberg A, Blumberg D (2013) Reevaluation of the sex pheromone of the lesser date moth, Batrachedra amydraula, using autosampling SPME-GC/MS and field bioassays. Chemoecology 23:13–24Messelink GJ, Bloemhard CMJ, Hoogerbrugge H, van Schelt J, Ingegno BL, Tavella L (2015) Evaluation of mirid predatory bugs and release strategy for aphid control in sweet pepper. J Appl Entomol 139:333–341Millar JG, Rice RE (1998) Sex pheromone of the plant bug Phytocoris californicus (Heteroptera: Miridae). J Econ Entomol 91:132–137Millar JG, Rice RE, Wang Q (1997) Sex pheromone of the mirid bug Phytocoris relativus. J Chem Ecol 23:1743–1754Naselli M, Urbaneja A, Siscaro G, Jaques JA, Zappalà L, Flors V, Pérez-Hedo M (2016a) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17:1210–1223Naselli M, Zappalà L, Gugliuzzo A, Tropea Garzia G, Biondi A, Rapisarda C, Cincotta F, Condurso C, Verzera A, Siscaro G (2016b) Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod-Plant Interact 11:121–131Ozawa R, Shiojiri K, Sabelis MW, Takabayashi J (2008) Maize plants sprayed with either jasmonic acid or its precursor, methyl linolenate, attract armyworm parasitoids, but the composition of attractants differs. Entomol Exp Appl 129:189–199Pappas ML, Steppuhn A, Geuss D, Topalidou N, Zografou A, Sabelis MW, Broufas GD (2015) Beyond predation: the zoophytophagous predator Macrolophus pygmaeus induces tomato resistance against spider mites. PLoS ONE 10(5):e0127251Paré PW, Tumlinson JH (1999) Plant volatiles as a defence against insect herbivores. Plant Physiol 121:325–331Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21Pérez-Hedo M, Urbaneja A (2015) Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci 88:65–73Pérez-Hedo M, Urbaneja A (2016) The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer International Publishing, Cham, pp 121–138Pérez-Hedo M, Suay R, Alonso M, Ruocco M, Giorgini M, Poncet C, Urbaneja A (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127Pérez-Hedo M, Urbaneja-Bernat P, Jaques JA, Flors V, Urbaneja A (2015a) Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. J Pest Sci 88:543–554Pérez-Hedo M, Bouagga S, Jaques JA, Flors V, Urbaneja A (2015b) Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera: Miridae). Biol Control 86:46–51Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L (2011) Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol Control 59:294–303Sabelis MW, Janssen A, Pallini A, Venzon M, Bruin J, Drukker B, Scutareanuu P (1999) Behavioural responses of predatory and herbivorous arthropods to induced plant volatiles: From evolutionary ecology to agricultural applications. In: Agrawal A, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. American Phytopathological Society Press, St. Paul, pp 269–296Sanchez JA (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biol Control 51:493–498Sanchez JA, Gillespie DR, McGregor RR (2004) Plant preference in relation to life history traits in the zoophytophagous predator Dicyphus hesperus. Entomol Exp Appl 112:7–19Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676Sinia A, Roitberg B, McGregor RR, Gillespie DR (2004) Prey feeding increases water stress in the omnivorous predator Dicyphus hesperus. Entomol Exp Appl 110:243–248Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol Control 11:122–129Ulland S, Ian E, Mozuraitis R, Borg-Karlson AK, Meadow R, Mustaparta H (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chem Senses 33:35–46Urbaneja A, Tapia G, Stansly P (2005) Influence of host plant and prey availability on developmental time and survivorship of Nesidiocoris tenuis (Het.: Miridae). Biocontrol Sci Techn 15:513–518Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus caliginosus and Nesidiocoris tenuis. J Appl Entomol 133:292–296Urbaneja A, González-Cabrera J, Arnó J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222van Lenteren J, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2017) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. https://doi.org/10.1007/s10526-017-9801-4Wager BR, Breed MD (2000) Does honey bee sting alarm pheromone give orientation information to defensive bees? Ann Entomol Soc Am 93:1329–1332Wang Z, Wen P, Qu Y, Dong S, Li J, Tan K, Nieh JC (2016) Bees eavesdrop upon informative and persistent signal compounds in alarm pheromones. Sci Rep-UK 6:25693War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320Yamashita KI, Isayama S, Ozawa R, Uefune M, Takabayashi J, Miura K (2016) A pecky rice-causing stink bug Leptocorisa chinensis escapes from volatiles emitted by excited conspecifics. J Ethol 34:1–7Zappala L, Biondi A, Alma A, Al-Jboory IJ, Arno J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, Guenaoui Y, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Aznar RV, Urbaneja A, Desneux N (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647Zappalà L, Siscaro G, Biondi A, Mollá O, González-Cabrera J, Urbaneja A (2012) Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis. J App Entomol 136:401–409Zhang QH, Aldrich JR (2008) Sex pheromone of the plant bug, Phytocoris calli Knight. J Chem Ecol 34:719–724Zhou S, Lou YR, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169:1488–149
    corecore