1,090 research outputs found

    Roughness and multiscaling of planar crack fronts

    Full text link
    We consider numerically the roughness of a planar crack front within the long-range elastic string model, with a tunable disorder correlation length ξ\xi. The problem is shown to have two important length scales, ξ\xi and the Larkin length LcL_c. Multiscaling of the crack front is observed for scales below ξ\xi, provided that the disorder is strong enough. The asymptotic scaling with a roughness exponent ζ≈0.39\zeta \approx 0.39 is recovered for scales larger than both ξ\xi and LcL_c. If Lc>ξL_c > \xi, these regimes are separated by a third regime characterized by the Larkin exponent ζL≈0.5\zeta_L \approx 0.5. We discuss the experimental implications of our results.Comment: 8 pages, two figure

    Fracture Roughness Scaling: a case study on planar cracks

    Full text link
    Using a multi-resolution technique, we analyze large in-plane fracture fronts moving slowly between two sintered Plexiglas plates. We find that the roughness of the front exhibits two distinct regimes separated by a crossover length scale δ∗\delta^*. Below δ∗\delta^*, we observe a multi-affine regime and the measured roughness exponent ζ∥−=0.60±0.05\zeta_{\parallel}^{-} = 0.60\pm 0.05 is in agreement with the coalescence model. Above δ∗\delta^*, the fronts are mono-affine, characterized by a roughness exponent ζ∥+=0.35±0.05\zeta_{\parallel}^{+} = 0.35\pm0.05, consistent with the fluctuating line model. We relate the crossover length scale to fluctuations in fracture toughness and the stress intensity factor

    A thermodynamical fiber bundle model for the fracture of disordered materials

    Full text link
    We investigate a disordered version of a thermodynamic fiber bundle model proposed by Selinger, Wang, Gelbart, and Ben-Shaul a few years ago. For simple forms of disorder, the model is analytically tractable and displays some new features. At either constant stress or constant strain, there is a non monotonic increase of the fraction of broken fibers as a function of temperature. Moreover, the same values of some macroscopic quantities as stress and strain may correspond to different microscopic cofigurations, which can be essential for determining the thermal activation time of the fracture. We argue that different microscopic states may be characterized by an experimentally accessible analog of the Edwards-Anderson parameter. At zero temperature, we recover the behavior of the irreversible fiber bundle model.Comment: 18 pages, 10 figure

    Morphology of two dimensional fracture surface

    Full text link
    We consider the morphology of two dimensional cracks observed in experimental results obtained from paper samples and compare these results with the numerical simulations of the random fuse model (RFM). We demonstrate that the data obey multiscaling at small scales but cross over to self-affine scaling at larger scales. Next, we show that the roughness exponent of the random fuse model is recovered by a simpler model that produces a connected crack, while a directed crack yields a different result, close to a random walk. We discuss the multiscaling behavior of all these models.Comment: slightly revise

    Status of Flat Electron Beam Production

    Get PDF
    Last year at LINAC2000 [1] we reported our initial verification of the round beam (comparable transverse emittances) to flat beam (high transverse emittance ratio) transformation described by Brinkmann, Derbenev, and Flöttmann [2]. Further analysis of our data has confirmed that a transverse emittance ratio of approximately 50 was observed. Graphics representing observational detail are included here, and future plans outlined

    Generation of angular-momentum-dominated electron beams from a photoinjector

    Get PDF
    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam

    Boron and Nitrogen Doped Single walled Carbon Nanotubes as Possible Dilute Magnetic Semiconductors

    Get PDF
    The structure of single walled armchair and zig-zag carbon nanotubes having 70 atoms and two carbons replaced by boron or nitrogen is obtained at minium energy using HF/6-31G* molecular orbital theory. The calculations show that the ground state of the zig-zag tubes is a triplet state while for the armchair tubes it is a singlet. In the zig-zag tubes the density of states at the Fermi level is greater for the spin down states compared to the spin up state indicating that the doped tubes could be ferromagnetic
    • …
    corecore